Algebraic Combinatorics: The Definitive Reference Guide

Introduction to Algebraic Combinatorics

Algebraic combinatorics is a field that uses algebraic methods to solve counting problems and, conversely, applies combinatorial techniques to understand algebraic structures. It sits at the intersection of several mathematical disciplines including combinatorics, algebra, representation theory, and geometry.

Key areas of study include:

  • Enumerative combinatorics
  • Symmetric functions and symmetric groups
  • Representation theory
  • Combinatorial species
  • Poset theory
  • Polytopes and arrangements
  • Matroids and combinatorial geometry
  • Combinatorial aspects of quantum groups

Fundamental Counting Principles

Basic Counting Formulas

ConceptFormulaDescription
Multiplication Principle$n_1 \times n_2 \times \cdots \times n_k$If a task consists of $k$ sequential steps, where the $i$-th step can be performed in $n_i$ ways, then the entire task can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways
Addition Principle$n_1 + n_2 + \cdots + n_k$If a task can be done in $k$ different ways, where the $i$-th way can be performed in $n_i$ ways, then the task can be performed in $n_1 + n_2 + \cdots + n_k$ ways
Inclusion-Exclusion Principle$A_1 \cup A_2 \cup \cdots \cup A_n
Pigeonhole PrincipleIf $n$ objects are placed into $m$ containers and $n > m$, then at least one container must contain more than one objectUsed to prove existence of certain patterns

Permutations and Combinations

ConceptFormulaDescription
Permutation of $n$ elements$P(n) = n!$Number of ordered arrangements of $n$ distinct elements
Permutation of $n$ elements taken $k$ at a time$P(n,k) = \frac{n!}{(n-k)!}$Number of ordered arrangements of $k$ elements selected from $n$ distinct elements
Combination of $n$ elements taken $k$ at a time$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$Number of unordered selections of $k$ elements from $n$ distinct elements
Multiset coefficient$\binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}$Number of ways to divide $n$ distinct objects into $m$ groups with $k_i$ objects in group $i$
Multiset permutation$\binom{n}{k_1, k_2, \ldots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}$Number of distinct permutations of $n$ elements where element $i$ appears $k_i$ times
Combinations with repetition$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$Number of ways to select $k$ elements from a set of $n$ elements, with repetition allowed

Binomial Coefficients Properties

PropertyFormula
Symmetry$\binom{n}{k} = \binom{n}{n-k}$
Pascal’s Identity$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
Binomial Theorem$(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$
Hockey Stick Identity$\sum_{j=r}^{n} \binom{j}{r} = \binom{n+1}{r+1}$
Vandermonde’s Identity$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$
Upper Negation Formula$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$

Generating Functions

Types of Generating Functions

TypeDefinitionUsage
Ordinary Generating Function (OGF)$G(x) = \sum_{n=0}^{\infty} a_n x^n$Counts objects where order matters
Exponential Generating Function (EGF)$G(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$Counts labeled objects
Probability Generating Function (PGF)$G(x) = \sum_{n=0}^{\infty} p_n x^n$Encodes probability distributions

Common Generating Functions

SequenceOrdinary Generating Function
$1, 1, 1, \ldots$$\frac{1}{1-x}$
$1, r, r^2, r^3, \ldots$$\frac{1}{1-rx}$
$0, 1, 2, 3, \ldots$$\frac{x}{(1-x)^2}$
$1, 2, 3, 4, \ldots$$\frac{1}{(1-x)^2}$
$1, 0, 1, 0, 1, \ldots$$\frac{1}{1-x^2}$
$0, 1, 0, 1, 0, \ldots$$\frac{x}{1-x^2}$
$1, C_0, C_1, C_2, \ldots$$\frac{1-\sqrt{1-4x}}{2x}$ (Catalan)
$F_0, F_1, F_2, \ldots$$\frac{x}{1-x-x^2}$ (Fibonacci)

Exponential Generating Functions

SequenceExponential Generating Function
$1, 1, 1, \ldots$$e^x$
$1, r, r^2, r^3, \ldots$$e^{rx}$
$0, 1, 2, 3, \ldots$$xe^x$
$0, 0, 1, 2, 3, \ldots$$x^2e^x$
$B_0, B_1, B_2, \ldots$$\frac{x}{e^x-1}$ (Bernoulli)
$1, 1, 2, 5, 15, \ldots$$\frac{1}{2-e^x}$ (Bell)

Generating Function Operations

OperationEffect on SequenceEffect on OGF
$a_n + b_n$Sum of sequences$A(x) + B(x)$
$c \cdot a_n$Scaling$c \cdot A(x)$
$a_{n-m}$ (for $n \geq m$)Shift right$x^m \cdot A(x)$
$a_{n+m}$Shift left$\frac{A(x) – a_0 – a_1x – \cdots – a_{m-1}x^{m-1}}{x^m}$
$\sum_{k=0}^{n} a_k b_{n-k}$Convolution$A(x) \cdot B(x)$
$n \cdot a_n$Differentiation$x \cdot \frac{d}{dx}A(x)$
$\frac{a_n}{n+1}$Integration$\int_0^x \frac{A(t)}{t} dt$
$a_0 + a_1 + \cdots + a_n$Partial sums$\frac{A(x)}{1-x}$

Symmetric Functions

Elementary Symmetric Functions

$e_k(x_1, x_2, \ldots, x_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$

Example: $e_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3$

Complete Homogeneous Symmetric Functions

$h_k(x_1, x_2, \ldots, x_n) = \sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}$

Example: $h_2(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$

Power Sum Symmetric Functions

$p_k(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} x_i^k$

Example: $p_2(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$

Monomial Symmetric Functions

$m_\lambda(x_1, x_2, \ldots, x_n) = \sum x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$

where the sum is over all distinct permutations $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ of the partition $\lambda$.

Schur Functions

$s_\lambda(x_1, x_2, \ldots, x_n) = \frac{\det(x_i^{\lambda_j + n – j}){1 \leq i,j \leq n}}{\det(x_i^{n-j}){1 \leq i,j \leq n}}$

Newton’s Identities

Relations between elementary symmetric functions and power sums:

$ke_k = \sum_{i=1}^{k} (-1)^{i-1} e_{k-i} p_i$

Representation Theory of the Symmetric Group

Cycle Structure and Conjugacy Classes

Conjugacy classes in $S_n$ correspond to partitions of $n$, representing cycle structures.

Example: In $S_4$, the permutation $(1,2)(3,4)$ has cycle structure $2+2=4$, corresponding to partition $[2,2]$.

Character Table Properties

  1. Number of irreducible representations equals number of conjugacy classes
  2. Sum of squares of dimensions equals order of group
  3. Characters are constant on conjugacy classes
  4. Different irreducible characters are orthogonal

Young Diagrams and Tableaux

  • Young Diagram: Visual representation of a partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$
  • Young Tableau: Filling of a Young diagram with entries $1, 2, \ldots, n$
  • Standard Young Tableau: Entries increase along rows and columns

Hook-Length Formula

Number of standard Young tableaux of shape $\lambda$:

$f^\lambda = \frac{n!}{\prod_{(i,j) \in \lambda} h_{ij}}$

where $h_{ij}$ is the hook length at position $(i,j)$.

Dimension Formula for Irreducible Representations

$\dim(V_\lambda) = \frac{n!}{\prod_{(i,j) \in \lambda} h_{ij}}$

Murnaghan-Nakayama Rule

For calculating character values:

$\chi^\lambda_\mu = \sum_{\nu} (-1)^{ht(\nu/\lambda)} \chi^{\nu}_{\mu – (r)}$

where the sum is over all partitions $\nu$ such that $\nu/\lambda$ is a border strip of size $r$.

Posets and Lattices

Basic Definitions

  • Poset: Partially ordered set $(P, \leq)$
  • Chain: Totally ordered subset of a poset
  • Antichain: Subset where no two elements are comparable
  • Hasse Diagram: Graphical representation of a poset

Important Posets in Combinatorics

PosetDescription
Boolean Lattice $B_n$Subsets of ${1,2,\ldots,n}$ ordered by inclusion
Divisor Lattice $D_n$Positive divisors of $n$ ordered by division
Young’s Lattice $Y$Partitions ordered by inclusion of Young diagrams
Partition Lattice $\Pi_n$Partitions of ${1,2,\ldots,n}$ ordered by refinement

Möbius Function and Möbius Inversion

For a locally finite poset $(P, \leq)$, the Möbius function $\mu(x,y)$ is defined recursively:

  • $\mu(x,x) = 1$ for all $x \in P$
  • $\mu(x,y) = -\sum_{x \leq z < y} \mu(x,z)$ for $x < y$

Möbius Inversion Formula: If $f(y) = \sum_{x \leq y} g(x)$, then $g(y) = \sum_{x \leq y} \mu(x,y) f(x)$

Notable Möbius Functions

PosetMöbius Function
Boolean Lattice $B_n$$\mu(X,Y) = (-1)^{
Divisor Lattice $D_n$$\mu(d,n) = \begin{cases} (-1)^k & \text{if } n/d \text{ is a product of } k \text{ distinct primes} \ 0 & \text{if } n/d \text{ is divisible by a square of a prime} \end{cases}$
Partition Lattice $\Pi_n$$\mu(\pi, \hat{1}) = (-1)^{n-b} (b-1)!$ where $b$ is the number of blocks in $\pi$

q-Analogs and Quantum Combinatorics

q-Numbers and q-Factorials

  • q-Number: $[n]_q = 1 + q + q^2 + \cdots + q^{n-1} = \frac{1-q^n}{1-q}$
  • q-Factorial: $[n]_q! = [1]_q [2]_q \cdots [n]_q$
  • q-Binomial Coefficient: $\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}$

Gaussian Binomial Coefficient Interpretations

  • Number of $k$-dimensional subspaces of an $n$-dimensional vector space over $\mathbb{F}_q$
  • $q$-analog of the binomial coefficient

q-Binomial Theorem

$(x+y)^n_q = \sum_{k=0}^{n} \binom{n}{k}_q x^{n-k} y^k$

where $(x+y)^n_q$ denotes the $q$-analog of $(x+y)^n$.

Matroids and Combinatorial Geometry

Matroid Definition

A matroid $M$ is a pair $(E, \mathcal{I})$ where $E$ is a finite set and $\mathcal{I}$ is a collection of subsets of $E$ (independent sets) such that:

  1. $\emptyset \in \mathcal{I}$
  2. If $I \in \mathcal{I}$ and $I’ \subseteq I$, then $I’ \in \mathcal{I}$
  3. If $I_1, I_2 \in \mathcal{I}$ and $|I_1| < |I_2|$, then $\exists e \in I_2 \setminus I_1$ such that $I_1 \cup {e} \in \mathcal{I}$

Examples of Matroids

TypeGround SetIndependent Sets
Graphic MatroidEdges of a graphForests (acyclic subgraphs)
Vector MatroidVectors in a matrixLinearly independent subsets
Uniform Matroid $U_{k,n}$${1,2,\ldots,n}$All subsets of size at most $k$

Tutte Polynomial

For a matroid $M$ on ground set $E$:

$T_M(x,y) = \sum_{A \subseteq E} (x-1)^{r(E)-r(A)} (y-1)^{|A|-r(A)}$

where $r(A)$ is the rank function of $M$.

Characteristic Polynomial

For a matroid $M$:

$\chi_M(t) = \sum_{X \subseteq E} (-1)^{|X|} t^{r(E) – r(X)}$

Enumerative Combinatorics

Important Counting Sequences

SequenceFormulaOEISDescription
Catalan Numbers$C_n = \frac{1}{n+1}\binom{2n}{n}$A000108Counts various structures including Dyck paths, binary trees
Bell Numbers$B_n = \sum_{k=0}^{n} S(n,k)$A000110Number of partitions of an $n$-element set
Stirling Numbers of 1st Kind$s(n,k)$A008275Counts permutations of $n$ elements with $k$ cycles
Stirling Numbers of 2nd Kind$S(n,k)$A008277Counts partitions of $n$ elements into $k$ non-empty subsets
Eulerian Numbers$A(n,k)$A008292Counts permutations of $n$ elements with $k$ ascents
Narayana Numbers$N(n,k) = \frac{1}{n}\binom{n}{k}\binom{n}{k-1}$A001263Refines Catalan numbers by various statistics

Stirling Numbers Recurrence Relations

  • First Kind: $s(n+1,k) = s(n,k-1) – n \cdot s(n,k)$
  • Second Kind: $S(n+1,k) = k \cdot S(n,k) + S(n,k-1)$

Eulerian Numbers Recurrence Relation

$A(n,k) = (n-k) \cdot A(n-1,k-1) + (k+1) \cdot A(n-1,k)$

Polytopes and Arrangements

Face Numbers and f-Vectors

For a $d$-dimensional polytope $P$, the $f$-vector is $(f_0, f_1, \ldots, f_{d-1})$ where $f_i$ counts the number of $i$-dimensional faces.

Euler’s Formula for Polytopes

For a $d$-dimensional convex polytope:

$\sum_{i=0}^{d-1} (-1)^i f_i = 1 + (-1)^{d-1}$

Hyperplane Arrangements

  • Region: Connected component of the complement of an arrangement
  • Characteristic Polynomial: $\chi(A,t) = \sum_{X \in L(A)} \mu(\hat{0}, X) \cdot t^{\dim(X)}$

Zaslavsky’s Theorem

Number of regions formed by a hyperplane arrangement $A$ in $\mathbb{R}^d$:

$r(A) = (-1)^d \chi(A, -1)$

Combinatorial Species

Definition

A combinatorial species $F$ is a functor from the category of finite sets and bijections to the category of finite sets and functions.

Operations on Species

OperationDescriptionGenerating Function
Sum $(F + G)$Disjoint union$F(x) + G(x)$
Product $(F \cdot G)$Cartesian product$F(x) \cdot G(x)$
Composition $(F \circ G)$Substitution$F(G(x))$
Derivative $(F’)$Remove marked element$\frac{d}{dx}F(x)$
Pointing $(F^\bullet)$Mark an element$x \cdot \frac{d}{dx}F(x)$

Common Species

SpeciesDescriptionEGF
$X$Singleton$x$
$E$Set$e^x$
$E_k$$k$-element set$\frac{x^k}{k!}$
$C$Cycle$\log(\frac{1}{1-x})$
$L$Linear order$\frac{1}{1-x}$
$B$Binary tree$T$ where $T = x + T^2$

Important Theorems and Results

Ramsey’s Theorem

For any integers $r, s \geq 2$, there exists a smallest integer $R(r,s)$ such that any graph on $n \geq R(r,s)$ vertices contains either a clique of size $r$ or an independent set of size $s$.

The Matrix-Tree Theorem

The number of spanning trees of a graph $G$ equals any cofactor of its Laplacian matrix.

Sperner’s Theorem

The largest antichain in the Boolean lattice $B_n$ has size $\binom{n}{\lfloor n/2 \rfloor}$.

The Robinson-Schensted-Knuth (RSK) Correspondence

Bijection between permutations in $S_n$ and pairs of standard Young tableaux of the same shape with $n$ boxes.

The Littlewood-Richardson Rule

For partitions $\lambda, \mu, \nu$:

$c_{\lambda\mu}^\nu = $ number of Littlewood-Richardson tableaux of shape $\nu/\lambda$ and weight $\mu$.

The Hook-Content Formula

For a partition $\lambda$:

$s_\lambda(1,q,q^2,\ldots,q^{n-1}) = q^{b(\lambda)} \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}}$

where $b(\lambda) = \sum (i-1)\lambda_i$, $c(u)$ is the content, and $h(u)$ is the hook length.

Combinatorial Algorithms

Algorithms for Generating Combinatorial Objects

ObjectAlgorithmComplexity
PermutationsHeap’s Algorithm$O(n!)$
CombinationsNext Combination$O(n \cdot \binom{n}{k})$
PartitionsNext Partition$O(p(n))$ where $p(n)$ is the partition function
Standard Young TableauxHook Walk Algorithm$O(n^2)$ per tableau

Algorithms for Computational Problems

ProblemAlgorithmComplexity
Matrix PermanentRyser’s Formula$O(n \cdot 2^n)$
Counting Linear ExtensionsDynamic Programming#P-complete in general
Tutte Polynomial EvaluationDeletion-ContractionExponential in general

Resources for Further Learning

Core Textbooks

  1. Richard P. Stanley. “Enumerative Combinatorics, Volumes 1 & 2”
  2. Gian-Carlo Rota. “Studies in Combinatorics”
  3. Anders Björner and Richard P. Stanley. “A Combinatorial Miscellany”
  4. Ian G. Macdonald. “Symmetric Functions and Hall Polynomials”
  5. Sergey Fomin. “Duality of Graded Graphs”

Research Journals

  1. Journal of Algebraic Combinatorics
  2. The Electronic Journal of Combinatorics
  3. Discrete Mathematics
  4. European Journal of Combinatorics
  5. Annals of Combinatorics

Online Resources

  1. The On-Line Encyclopedia of Integer Sequences (OEIS)
  2. Combinatorial Object Server
  3. MathOverflow (algebraic-combinatorics tag)
  4. SAGE Mathematical Software
Scroll to Top