Introduction: Understanding Astrophysics
Astrophysics is the branch of astronomy that applies the laws of physics to understand the properties, formation, and evolution of celestial objects and the universe as a whole. It seeks to explain the behavior of everything from subatomic particles to galactic superclusters using physical principles. This cheatsheet provides a comprehensive reference to the fundamental constants, equations, phenomena, and observational techniques that form the foundation of modern astrophysics.
Fundamental Constants & Conversions
Key Physical Constants
Constant | Symbol | Value | Units |
---|---|---|---|
Speed of Light | $c$ | $2.99792458 \times 10^8$ | m/s |
Gravitational Constant | $G$ | $6.67430 \times 10^{-11}$ | m³/kg·s² |
Planck’s Constant | $h$ | $6.62607015 \times 10^{-34}$ | J·s |
Reduced Planck’s Constant | $\hbar$ | $1.054571817 \times 10^{-34}$ | J·s |
Boltzmann Constant | $k_B$ | $1.380649 \times 10^{-23}$ | J/K |
Stefan-Boltzmann Constant | $\sigma$ | $5.670374419 \times 10^{-8}$ | W/m²·K⁴ |
Electron Mass | $m_e$ | $9.1093837015 \times 10^{-31}$ | kg |
Proton Mass | $m_p$ | $1.67262192369 \times 10^{-27}$ | kg |
Electron Volt | eV | $1.602176634 \times 10^{-19}$ | J |
Astronomical Unit | AU | $1.495978707 \times 10^{11}$ | m |
Parsec | pc | $3.085677581 \times 10^{16}$ | m |
Solar Mass | $M_{\odot}$ | $1.988409870 \times 10^{30}$ | kg |
Solar Radius | $R_{\odot}$ | $6.957 \times 10^8$ | m |
Solar Luminosity | $L_{\odot}$ | $3.828 \times 10^{26}$ | W |
Unit Conversions
Distance:
- 1 pc = 3.26 light-years = 206,265 AU
- 1 light-year = 9.461 × 10¹⁵ m
- 1 kpc = 1,000 pc
- 1 Mpc = 1,000 kpc
Energy:
- 1 keV = 1,000 eV = 1.602 × 10⁻¹⁶ J
- 1 MeV = 1,000 keV
- 1 GeV = 1,000 MeV
- 1 erg = 10⁻⁷ J
Time:
- 1 year = 3.156 × 10⁷ s
- 1 Myr = 10⁶ years
- 1 Gyr = 10⁹ years
Core Astrophysical Concepts
Electromagnetic Radiation
- Wavelength-Frequency Relation: $\lambda\nu = c$
- Planck’s Law: $B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} – 1}$
- Wien’s Displacement Law: $\lambda_{max}T = 2.898 \times 10^{-3}$ m·K
- Stefan-Boltzmann Law: $L = 4\pi R^2 \sigma T^4$
- Electromagnetic Spectrum (in order of increasing wavelength):
- Gamma rays: < 0.01 nm
- X-rays: 0.01 – 10 nm
- Ultraviolet: 10 – 380 nm
- Visible light: 380 – 750 nm
- Infrared: 750 nm – 1 mm
- Microwave: 1 mm – 30 cm
- Radio: > 30 cm
Newtonian Gravity
- Newton’s Law of Gravity: $F = \frac{GMm}{r^2}$
- Gravitational Potential: $\Phi = -\frac{GM}{r}$
- Escape Velocity: $v_{esc} = \sqrt{\frac{2GM}{r}} = \sqrt{2g_s R}$
- Orbital Period: $P = 2\pi\sqrt{\frac{a^3}{GM}}$
- Kepler’s Third Law: $\frac{P^2}{a^3} = \frac{4\pi^2}{G(M_1 + M_2)}$
- Virial Theorem: $2\langle T \rangle + \langle U \rangle = 0$ (time-averaged kinetic and potential energy)
Special Relativity
- Lorentz Factor: $\gamma = \frac{1}{\sqrt{1 – v^2/c^2}}$
- Time Dilation: $\Delta t = \gamma \Delta t_0$
- Length Contraction: $L = \frac{L_0}{\gamma}$
- Relativistic Mass: $m = \gamma m_0$
- Mass-Energy Equivalence: $E = mc^2$
- Relativistic Doppler Effect: $\nu_{observed} = \nu_{source}\gamma(1 – \frac{v}{c}\cos\theta)$
General Relativity
- Einstein Field Equations: $G_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$
- Schwarzschild Radius: $R_s = \frac{2GM}{c^2} = 2.95 \frac{M}{M_{\odot}}$ km
- Gravitational Redshift: $\frac{\lambda_{observed}}{\lambda_{emitted}} = \frac{1}{\sqrt{1 – \frac{2GM}{rc^2}}}$
- Gravitational Lensing Angle: $\alpha = \frac{4GM}{bc^2}$ (for light with impact parameter $b$)
- Gravitational Wave Strain: $h \approx \frac{4G}{c^4}\frac{E}{r}$ (at distance $r$ from source with energy $E$)
Stellar Astrophysics
Stellar Classification and Properties
Spectral Classification (OBAFGKM, from hottest to coolest)
- O: > 30,000 K
- B: 10,000 – 30,000 K
- A: 7,500 – 10,000 K
- F: 6,000 – 7,500 K
- G: 5,200 – 6,000 K
- K: 3,700 – 5,200 K
- M: 2,400 – 3,700 K
Mass-Luminosity Relation: $\frac{L}{L_{\odot}} \approx \left(\frac{M}{M_{\odot}}\right)^{3.5}$ (main sequence stars)
Stellar Radius Calculation: $R = \sqrt{\frac{L}{4\pi\sigma T^4}}$
Hertzsprung-Russell Diagram: Plot of luminosity vs. temperature/spectral class
- Main Sequence: Hydrogen-burning stars
- Giants/Supergiants: Expanded evolved stars
- White Dwarfs: Stellar remnants
Stellar Structure Equations
- Hydrostatic Equilibrium: $\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}$
- Mass Conservation: $\frac{dM(r)}{dr} = 4\pi r^2 \rho(r)$
- Energy Transport: $\frac{dT}{dr} = -\frac{3\kappa \rho L(r)}{64\pi \sigma r^2 T^3}$ (radiative) or $\frac{dT}{dr} = (1-\frac{1}{\gamma})\frac{T}{P}\frac{dP}{dr}$ (convective)
- Energy Generation: $\frac{dL(r)}{dr} = 4\pi r^2 \rho(r) \epsilon(r)$
Nuclear Fusion Processes
Proton-Proton Chain (dominant in low-mass stars):
- Net: $4 \text{p} \rightarrow \text{He} + 2e^+ + 2\nu_e + \text{energy (26.7 MeV)}$
CNO Cycle (dominant in stars > 1.3 $M_{\odot}$):
- Net: $4 \text{p} \rightarrow \text{He} + 2e^+ + 2\nu_e + \text{energy (26.7 MeV)}$
- Carbon acts as catalyst
Triple-Alpha Process:
- Net: $3 \text{He} \rightarrow \text{C} + \text{energy (7.275 MeV)}$
Energy Release Rate:
- PP-Chain: $\epsilon_{PP} \propto \rho T^4$
- CNO Cycle: $\epsilon_{CNO} \propto \rho T^{16}$
Stellar Evolution Timeline (1 $M_{\odot}$ star)
Phase | Duration | Key Events |
---|---|---|
Protostar | ~10⁷ years | Gravitational contraction, T increases |
Main Sequence | ~10¹⁰ years | Hydrogen fusion in core |
Red Giant | ~10⁹ years | H-shell burning, core contraction |
Horizontal Branch | ~10⁸ years | Helium fusion in core |
Asymptotic Giant Branch | ~10⁶ years | He/H shell burning, thermal pulses |
Planetary Nebula | ~10⁴ years | Outer layers ejected |
White Dwarf | > 10¹⁰ years | Cooling remnant, no fusion |
Stellar Endpoints
White Dwarf:
- Mass: < 1.44 $M_{\odot}$ (Chandrasekhar limit)
- Composition: Carbon/Oxygen or Oxygen/Neon/Magnesium
- Support: Electron degeneracy pressure
- Density: ~10⁶ g/cm³
- Size: ~Earth-sized
Neutron Star:
- Mass: 1.44 – ~3 $M_{\odot}$
- Composition: Mostly neutrons
- Support: Neutron degeneracy pressure
- Density: ~10¹⁴ g/cm³
- Size: ~10-20 km diameter
- Rotation: ms to s periods
- Magnetic Field: 10⁸ – 10¹⁵ G
Black Hole:
- Mass: > ~3 $M_{\odot}$
- Defining Feature: Event horizon at $r = 2GM/c²$
- Types: Stellar (3-100 $M_{\odot}$), Intermediate (10²-10⁵ $M_{\odot}$), Supermassive (10⁵-10¹⁰ $M_{\odot}$)
Galactic and Extragalactic Astrophysics
Milky Way Properties
- Structure: Barred spiral galaxy (SBc type)
- Diameter: ~100,000 light-years
- Mass: ~1-1.5 × 10¹² $M_{\odot}$ (including dark matter)
- Stars: ~200-400 billion
- Components:
- Disk: Contains spiral arms, star-forming regions
- Bulge: Older stars, central bar structure
- Halo: Globular clusters, dark matter
- Supermassive Black Hole (Sgr A*): ~4.3 × 10⁶ $M_{\odot}$
Galaxy Classification
- Elliptical (E0-E7): Featureless, old stellar populations
- Spiral (Sa-Sc): Disk with spiral arms, ongoing star formation
- Barred Spiral (SBa-SBc): Spiral with central bar structure
- Lenticular (S0): Disk and bulge but no spiral arms
- Irregular: No definite structure
Dark Matter Evidence
- Galaxy Rotation Curves: Flat velocity profiles at large radii
- Virial Theorem in Clusters: Insufficient visible mass for observed velocities
- Gravitational Lensing: Mass distribution exceeds visible matter
- Cosmic Microwave Background: Angular power spectrum
- Large-Scale Structure Formation: Requires non-baryonic matter
Active Galactic Nuclei (AGN)
Common Features: Supermassive black hole, accretion disk, jets (sometimes)
Types:
- Seyfert Galaxies: Spiral hosts, prominent emission lines
- Radio Galaxies: Powerful radio-emitting jets
- Quasars: Extremely luminous, distant objects
- Blazars: Jet oriented toward Earth
Unified Model: Different AGN types are the same phenomenon viewed from different angles
Galaxy Evolution
- Merger Sequence: Spirals → Interacting/Peculiar → Elliptical
- Star Formation History: Peak at z~2 (cosmic noon)
- Downsizing: Massive galaxies formed stars earlier and faster
- Feedback Mechanisms:
- Stellar feedback: Supernovae, stellar winds
- AGN feedback: Jets, winds from central black hole
Cosmology
Fundamental Observations
- Hubble’s Law: $v = H_0 d$ (recession velocity proportional to distance)
- Cosmological Principle: Universe homogeneous and isotropic on large scales
- Cosmic Microwave Background: Thermal radiation at T = 2.7255 K
- Abundance of Light Elements: Consistent with Big Bang Nucleosynthesis
- Large-Scale Structure: Filaments, voids, clusters of galaxies
Friedmann Equations
- First Friedmann Equation: $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho – \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}$
- Second Friedmann Equation: $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^2}\right) + \frac{\Lambda c^2}{3}$
- Where:
- $a(t)$ = scale factor
- $\rho$ = energy density
- $P$ = pressure
- $k$ = curvature parameter (-1, 0, +1)
- $\Lambda$ = cosmological constant
Cosmological Parameters
- Hubble Constant: $H_0 = 67.4$ km/s/Mpc (Planck) or $H_0 = 73.5$ km/s/Mpc (local measurements)
- Hubble Time: $t_H = 1/H_0 \approx 13.8$ Gyr
- Hubble Radius: $R_H = c/H_0 \approx 14.4$ Gpc
- Critical Density: $\rho_c = \frac{3H_0^2}{8\pi G} \approx 8.5 \times 10^{-27}$ kg/m³
- Density Parameters:
- $\Omega_m \approx 0.31$ (matter)
- $\Omega_\Lambda \approx 0.69$ (dark energy)
- $\Omega_b \approx 0.049$ (baryonic matter)
- $\Omega_r \approx 9 \times 10^{-5}$ (radiation)
- $\Omega_k \approx 0$ (spatial curvature)
Cosmic Timeline
Epoch | Time After Big Bang | Key Events |
---|---|---|
Planck Epoch | < 10⁻⁴³ s | Quantum gravity era |
Grand Unification | 10⁻⁴³ – 10⁻³⁶ s | All forces except gravity unified |
Electroweak | 10⁻³⁶ – 10⁻¹² s | Strong force separates, inflation occurs |
Quark-Hadron Transition | 10⁻¹² – 10⁻⁶ s | Quarks combine to form hadrons |
Nucleosynthesis | 1 s – 3 min | Formation of H, He, Li nuclei |
Recombination | 380,000 years | Atoms form, universe becomes transparent |
Dark Ages | 380,000 – 150 million years | No stars yet, neutral hydrogen |
Reionization | 150 – 800 million years | First stars ionize hydrogen |
Galaxy Formation | 1 billion years+ | Galaxies begin to assemble |
Present Day | 13.8 billion years | Accelerating expansion due to dark energy |
Redshift Relations
- Cosmological Redshift: $z = \frac{\lambda_{observed} – \lambda_{emitted}}{\lambda_{emitted}} = \frac{a_0}{a} – 1$
- Distance-Redshift (low z): $d_L \approx \frac{c}{H_0}z$
- Luminosity Distance: $d_L = (1+z)r$ where $r$ is comoving distance
- Angular Diameter Distance: $d_A = \frac{r}{1+z}$
- Time-Redshift Relation (matter-dominated): $t(z) \approx \frac{2}{3H_0\sqrt{\Omega_m}}(1+z)^{-3/2}$
Observational Techniques
Telescopes and Detectors
Angular Resolution: $\theta \approx 1.22 \frac{\lambda}{D}$ (diffraction limit)
Light-Gathering Power: $\propto D^2$
Signal-to-Noise Ratio: $SNR \propto \sqrt{t\cdot A\cdot\epsilon/\Delta\lambda}$
- $t$ = exposure time
- $A$ = collecting area
- $\epsilon$ = efficiency
- $\Delta\lambda$ = bandpass
Telescope Types:
- Refractor: Uses lenses
- Reflector: Uses mirrors
- Catadioptric: Combines lenses and mirrors
- Radio: Parabolic dishes or arrays
- Interferometer: Multiple telescopes combined for higher resolution
Magnitude System
- Apparent Magnitude: $m = -2.5 \log_{10}(F) + C$
- Absolute Magnitude: $M = m – 5\log_{10}(d/10)$ where $d$ in pc
- Distance Modulus: $\mu = m – M = 5\log_{10}(d) – 5$ where $d$ in pc
- Bolometric Correction: $BC = M_{bol} – M_V$
Spectroscopy
- Spectral Line Identification: Element/molecule fingerprints
- Thermal Broadening: $\Delta\lambda \propto \sqrt{T/m}$
- Doppler Shift: $\Delta\lambda/\lambda = v/c$ (non-relativistic)
- Equivalent Width: $W = \int (1 – F_\lambda/F_c) d\lambda$
- Curve of Growth: Relates equivalent width to abundance
Multi-Messenger Astronomy
- Electromagnetic Radiation: Traditional astronomy (radio to gamma)
- Gravitational Waves: Ripples in spacetime from merging compact objects
- Neutrinos: Nearly massless particles from nuclear processes
- Cosmic Rays: High-energy particles (primarily protons)
Common Challenges and Solutions
Challenge | Description | Solutions/Methods |
---|---|---|
Atmospheric Distortion | Turbulence blurs ground-based images | Adaptive optics, speckle imaging, space telescopes |
Light Pollution | Artificial light brightens night sky | Remote observatories, narrowband filters, image processing |
Resolution Limits | Diffraction restricts detail | Larger apertures, interferometry, shorter wavelengths |
Interstellar Extinction | Dust absorbs/scatters light | Infrared observations, extinction corrections |
Weak Signal Detection | Objects too faint for direct detection | Longer exposures, signal stacking, larger telescopes |
Distance Measurement | Direct methods limited to nearby objects | Standard candles, redshift, parallax methods |
Spectral Contamination | Multiple sources in spectroscope slit | Integral field units, multi-object spectroscopy |
Cosmic Variance | Statistical uncertainty in limited volume | Larger surveys, multiple fields, theoretical corrections |
Best Practices for Data Analysis
Statistical Methods
- Chi-squared Minimization: $\chi^2 = \sum_i \frac{(O_i – M_i)^2}{\sigma_i^2}$
- Maximum Likelihood Estimation: $\mathcal{L}(\theta | x) = \prod_i p(x_i | \theta)$
- Bayesian Inference: $p(\theta | x) \propto p(x | \theta) p(\theta)$
- Monte Carlo Methods: Numerical evaluation via random sampling
Common Data Processing Steps
Calibration:
- Bias/dark subtraction
- Flat fielding
- Wavelength calibration (spectroscopy)
- Flux calibration
Source Extraction:
- Background determination
- Source identification
- Photometry/spectral extraction
- Astrometric solution
Analysis Techniques:
- Model fitting
- Spectral line measurements
- Time series analysis (periods, variability)
- Population statistics
Resources for Further Learning
Online Data Archives
- NASA/IPAC Extragalactic Database (NED)
- Sloan Digital Sky Survey (SDSS)
- ESO Science Archive
- NASA Astrophysics Data System (ADS)
- SIMBAD Astronomical Database
Major Observatories
Ground-based Optical/IR:
- Very Large Telescope (VLT)
- Keck Observatory
- Gemini Observatories
- Subaru Telescope
- Giant Magellan Telescope (future)
Space-based:
- Hubble Space Telescope
- James Webb Space Telescope
- Chandra X-ray Observatory
- XMM-Newton
- Gaia
Radio:
- Atacama Large Millimeter Array (ALMA)
- Very Large Array (VLA)
- Square Kilometre Array (future)
Software Tools
- IRAF/PyRAF (image reduction)
- AstroPy (Python package)
- DS9 (image visualization)
- TOPCAT (table manipulation)
- CASA (radio astronomy)
Recommended Textbooks
- “An Introduction to Modern Astrophysics” by Carroll & Ostlie
- “Radiative Processes in Astrophysics” by Rybicki & Lightman
- “Galactic Dynamics” by Binney & Tremaine
- “Stellar Structure and Evolution” by Kippenhahn & Weigert
- “Extragalactic Astronomy and Cosmology” by Schneider
This cheatsheet provides a comprehensive but necessarily simplified overview of the vast field of astrophysics. Many formulas have additional terms or modifications for specific conditions. Advanced applications often require more detailed understanding of each topic.