The Ultimate Calculus Integrals Cheatsheet: Techniques and Formulas

Introduction: Understanding Integrals

Integration is a fundamental concept in calculus that allows us to find areas, volumes, displacement, total change, and solve differential equations. There are two main types of integrals: indefinite integrals (antiderivatives) and definite integrals (which calculate the accumulated total change over an interval). Mastering integration techniques is essential for applications in physics, engineering, economics, and many other fields where calculating accumulation or total change is necessary.

Core Integration Concepts

Antiderivatives and Indefinite Integrals

The indefinite integral of a function f(x) is the family of all antiderivatives of f(x):

$\int f(x) , dx = F(x) + C$

Where:

  • F(x) is an antiderivative of f(x)
  • C is the constant of integration
  • F'(x) = f(x)

Definite Integrals

A definite integral calculates the net accumulation of a function over an interval [a,b]:

$\int_a^b f(x) , dx = F(b) – F(a)$

Where F(x) is an antiderivative of f(x).

Fundamental Theorem of Calculus

Part 1: If f is continuous on [a,b], then the function $F(x) = \int_a^x f(t) , dt$ is continuous on [a,b], differentiable on (a,b), and F'(x) = f(x).

Part 2: If f is continuous on [a,b] and F is any antiderivative of f, then: $\int_a^b f(x) , dx = F(b) – F(a)$

Basic Integration Rules

RuleFormula
Constant Rule$\int k , dx = kx + C$
Power Rule$\int x^n , dx = \frac{x^{n+1}}{n+1} + C$ (for $n \neq -1$)
Logarithmic Rule$\int \frac{1}{x} , dx = \ln|x| + C$
Exponential Rule$\int e^x , dx = e^x + C$
Sum/Difference Rule$\int [f(x) \pm g(x)] , dx = \int f(x) , dx \pm \int g(x) , dx$
Constant Multiple Rule$\int kf(x) , dx = k\int f(x) , dx$

Basic Integral Forms

Trigonometric Functions

FunctionIntegral
$\sin(x)$$-\cos(x) + C$
$\cos(x)$$\sin(x) + C$
$\tan(x)$$-\ln|\cos(x)| + C$ or $\ln|\sec(x)| + C$
$\cot(x)$$\ln|\sin(x)| + C$
$\sec(x)$$\ln|\sec(x) + \tan(x)| + C$
$\csc(x)$$\ln|\csc(x) – \cot(x)| + C$
$\sec^2(x)$$\tan(x) + C$
$\csc^2(x)$$-\cot(x) + C$
$\sec(x)\tan(x)$$\sec(x) + C$
$\csc(x)\cot(x)$$-\csc(x) + C$

Exponential and Logarithmic Functions

FunctionIntegral
$e^x$$e^x + C$
$a^x$$\frac{a^x}{\ln(a)} + C$
$\ln(x)$$x\ln(x) – x + C$
$\frac{1}{x\ln(x)}$$\ln|\ln(x)| + C$

Inverse Trigonometric Functions

FunctionIntegral
$\frac{1}{\sqrt{1-x^2}}$$\arcsin(x) + C$
$\frac{1}{1+x^2}$$\arctan(x) + C$
$\frac{1}{\sqrt{x^2-1}}$$\ln|x + \sqrt{x^2-1}| + C$ or $\text{arcsec}(x) + C$ for $x > 1$
$\frac{1}{x\sqrt{1-x^2}}$$-\frac{1}{2}\ln|\frac{1+\sqrt{1-x^2}}{1-\sqrt{1-x^2}}| + C$ or $-\text{arccsc}(x) + C$

Integration Techniques

1. Substitution (U-Substitution)

For integrals of the form $\int f(g(x))g'(x) , dx$:

  1. Let u = g(x)
  2. Find du = g'(x) dx
  3. Substitute to get $\int f(u) , du$
  4. Integrate with respect to u
  5. Substitute back to get answer in terms of x

Example: $\int x\sin(x^2) , dx$

  • Let u = x²
  • du = 2x dx
  • dx = du/(2x)
  • $\int x\sin(x^2) , dx = \int \sin(u) \cdot \frac{du}{2} = -\frac{\cos(u)}{2} + C = -\frac{\cos(x^2)}{2} + C$

2. Integration by Parts

For integrals of the form $\int u(x)v'(x) , dx$:

Formula: $\int u(x)v'(x) , dx = u(x)v(x) – \int v(x)u'(x) , dx$

LIATE method for choosing u (in order of preference):

  • L: Logarithmic functions
  • I: Inverse trigonometric functions
  • A: Algebraic functions
  • T: Trigonometric functions
  • E: Exponential functions

Example: $\int x\ln(x) , dx$

  • u = ln(x), dv = x dx
  • du = 1/x dx, v = x²/2
  • $\int x\ln(x) , dx = \frac{x^2\ln(x)}{2} – \int \frac{x^2}{2} \cdot \frac{1}{x} , dx = \frac{x^2\ln(x)}{2} – \frac{1}{2}\int x , dx$
  • $= \frac{x^2\ln(x)}{2} – \frac{x^2}{4} + C = \frac{x^2\ln(x)}{2} – \frac{x^2}{4} + C$

3. Trigonometric Substitution

Used for integrals involving:

ExpressionSubstitutionIdentity
$\sqrt{a^2-x^2}$x = a sin(θ)$\sqrt{a^2-x^2} = a\cos(θ)$
$\sqrt{x^2-a^2}$x = a sec(θ)$\sqrt{x^2-a^2} = a\tan(θ)$
$\sqrt{x^2+a^2}$x = a tan(θ)$\sqrt{x^2+a^2} = a\sec(θ)$

Example: $\int \frac{1}{\sqrt{9-x^2}} , dx$

  • Let x = 3sin(θ), dx = 3cos(θ) dθ
  • $\sqrt{9-x^2} = \sqrt{9-9\sin^2(θ)} = \sqrt{9\cos^2(θ)} = 3\cos(θ)$
  • $\int \frac{1}{\sqrt{9-x^2}} , dx = \int \frac{3\cos(θ)}{3\cos(θ)} , dθ = \int dθ = θ + C = \arcsin(\frac{x}{3}) + C$

4. Partial Fractions

For rational functions $\frac{P(x)}{Q(x)}$ where degree of P < degree of Q:

  1. Factor denominator Q(x) completely
  2. Write as sum of simpler fractions:
    • For linear factor (ax+b): $\frac{A}{ax+b}$
    • For repeated linear factor (ax+b)^n: $\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + … + \frac{A_n}{(ax+b)^n}$
    • For irreducible quadratic factor ax²+bx+c: $\frac{Ax+B}{ax^2+bx+c}$
    • For repeated quadratic (ax²+bx+c)^n: $\frac{A_1x+B_1}{ax^2+bx+c} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + … + \frac{A_nx+B_n}{(ax^2+bx+c)^n}$
  3. Solve for coefficients by:
    • Combining fractions into a single fraction
    • Comparing coefficients with the original numerator
    • Using substitution to find values

Example: $\int \frac{3x+5}{x^2-4} , dx = \int \frac{3x+5}{(x-2)(x+2)} , dx$

  • Partial fraction decomposition: $\frac{3x+5}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}$
  • Find A and B: $3x+5 = A(x+2) + B(x-2)$
  • When x = 2: $3(2)+5 = A(2+2) → A = \frac{11}{4}$
  • When x = -2: $3(-2)+5 = B(-2-2) → B = \frac{-1}{4}$
  • $\int \frac{3x+5}{x^2-4} , dx = \int \left(\frac{11/4}{x-2} – \frac{1/4}{x+2}\right) , dx = \frac{11}{4}\ln|x-2| – \frac{1}{4}\ln|x+2| + C$
  • $= \frac{1}{4}\ln\left|\frac{(x-2)^{11}}{x+2}\right| + C$

5. Trigonometric Integrals

Powers of Sine and Cosine

IntegralFormula
$\int \sin^2(x) , dx$$\frac{x}{2} – \frac{\sin(2x)}{4} + C$
$\int \cos^2(x) , dx$$\frac{x}{2} + \frac{\sin(2x)}{4} + C$
$\int \sin^n(x) , dx$ (n even)Use $\sin^2(x) = \frac{1-\cos(2x)}{2}$
$\int \sin^n(x) , dx$ (n odd ≥ 3)Use $\sin^n(x) = \sin^{n-1}(x)\sin(x)$ and $\sin^{n-1}(x) = \sin^{n-2}(x)(1-\cos^2(x))$
$\int \cos^n(x) , dx$ (n even)Use $\cos^2(x) = \frac{1+\cos(2x)}{2}$
$\int \cos^n(x) , dx$ (n odd ≥ 3)Use $\cos^n(x) = \cos^{n-1}(x)\cos(x)$ and $\cos^{n-1}(x) = \cos^{n-2}(x)(1-\sin^2(x))$

Products of Sine and Cosine

IntegralFormula
$\int \sin(mx)\cos(nx) , dx$$\frac{\sin((m-n)x)}{2(m-n)} – \frac{\sin((m+n)x)}{2(m+n)} + C$ (for m ≠ n, m ≠ -n)
$\int \sin(mx)\sin(nx) , dx$$\frac{\cos((m-n)x)}{2(m-n)} – \frac{\cos((m+n)x)}{2(m+n)} + C$ (for m ≠ n, m ≠ -n)
$\int \cos(mx)\cos(nx) , dx$$\frac{\cos((m-n)x)}{2(m-n)} + \frac{\cos((m+n)x)}{2(m+n)} + C$ (for m ≠ n, m ≠ -n)

6. Improper Integrals

Type 1: Infinite Limits

$\int_a^{\infty} f(x) , dx = \lim_{t \to \infty} \int_a^t f(x) , dx$

$\int_{-\infty}^b f(x) , dx = \lim_{t \to -\infty} \int_t^b f(x) , dx$

$\int_{-\infty}^{\infty} f(x) , dx = \int_{-\infty}^c f(x) , dx + \int_c^{\infty} f(x) , dx$ (for any c)

Type 2: Discontinuous Integrands

$\int_a^b f(x) , dx = \lim_{t \to c^-} \int_a^t f(x) , dx + \lim_{t \to c^+} \int_t^b f(x) , dx$

(Where f(x) has a discontinuity at x = c, a < c < b)

7. Integration Using Tables

For complex integrals, reference integration tables or formulas like:

IntegralResult
$\int \frac{1}{x^2+a^2} , dx$$\frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$
$\int \frac{1}{x^2-a^2} , dx$$\frac{1}{2a}\ln\left
$\int \frac{1}{\sqrt{x^2+a^2}} , dx$$\ln|x + \sqrt{x^2+a^2}| + C$
$\int \sqrt{x^2+a^2} , dx$$\frac{x\sqrt{x^2+a^2}}{2} + \frac{a^2}{2}\ln|x + \sqrt{x^2+a^2}| + C$
$\int \frac{1}{\sqrt{a^2-x^2}} , dx$$\arcsin\left(\frac{x}{a}\right) + C$
$\int \sqrt{a^2-x^2} , dx$$\frac{x\sqrt{a^2-x^2}}{2} + \frac{a^2}{2}\arcsin\left(\frac{x}{a}\right) + C$

Applications of Integration

1. Area Calculation

Area under a curve

$A = \int_a^b f(x) , dx$ (for f(x) ≥ 0)

Area between two curves

$A = \int_a^b [f(x) – g(x)] , dx$ (for f(x) ≥ g(x) on [a,b])

2. Volume Calculation

Disk Method (around x-axis)

$V = \pi \int_a^b [f(x)]^2 , dx$

Washer Method (around x-axis)

$V = \pi \int_a^b [(f(x))^2 – (g(x))^2] , dx$

Shell Method (around y-axis)

$V = 2\pi \int_a^b x \cdot f(x) , dx$

3. Arc Length and Surface Area

Arc Length

$L = \int_a^b \sqrt{1 + [f'(x)]^2} , dx$

Surface Area of Revolution (around x-axis)

$S = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} , dx$

4. Work and Fluid Force

Work done by variable force

$W = \int_a^b F(x) , dx$

Fluid force on a vertical plate

$F = \rho g \int_a^b w(y)(y-a) , dy$ Where ρ is fluid density, g is gravity, w(y) is width at depth y, and y-a is depth.

5. Center of Mass and Moments

Center of mass x-coordinate (1D)

$\bar{x} = \frac{\int_a^b x \cdot \rho(x) , dx}{\int_a^b \rho(x) , dx}$

Moment of inertia (around origin)

$I_0 = \int_a^b x^2 \cdot \rho(x) , dx$

Common Integration Challenges and Solutions

Challenge: Integrals with No Elementary Antiderivatives

Some functions don’t have elementary antiderivatives, including:

  • $\int e^{-x^2} , dx$ (Error function related)
  • $\int \frac{\sin(x)}{x} , dx$ (Sine integral)
  • $\int \ln(x) , dx$ (Logarithmic integral)

Solution: Use numerical integration methods or express in terms of special functions.

Challenge: Selecting the Right Integration Technique

Solution: Follow this decision flowchart:

  1. Try direct substitution if the integral contains:

    • A composite function with its derivative
    • A recognizable form from the basic integrals table
  2. Use Integration by Parts if:

    • Product of functions (not quotients)
    • LIATE rule helps select u and dv
    • Especially for: logarithms, inverse trig functions, products with polynomials
  3. Try Trigonometric Substitution if:

    • Contains $\sqrt{a^2-x^2}$, $\sqrt{x^2-a^2}$, or $\sqrt{x^2+a^2}$
  4. Use Partial Fractions if:

    • Rational function (fraction of polynomials)
    • Degree of numerator < degree of denominator
  5. For trigonometric functions:

    • Powers of sine and cosine: use double angle formulas
    • Products of sines and cosines: use product-to-sum formulas

Challenge: Dealing with Improper Integrals

Solutions:

  • For infinite limits: use limits and check for convergence
  • For discontinuous integrands: split at discontinuities
  • Common convergence tests:
    • $\int_1^{\infty} \frac{1}{x^p} , dx$ converges if p > 1, diverges if p ≤ 1
    • $\int_0^1 \frac{1}{x^p} , dx$ converges if p < 1, diverges if p ≥ 1

Integration Strategies – Quick Reference

  1. Simplify first: Simplify the integrand using algebraic manipulations if possible.

  2. Look for patterns: Many integrals match standard forms with known solutions.

  3. Try substitution first: For composite functions where one function’s derivative appears.

  4. Integration by parts: Use for products where one factor is easier to differentiate than to integrate.

  5. Powers of trigonometric functions:

    • For $\sin^n(x)$ or $\cos^n(x)$ with n even, use double-angle formulas.
    • For $\sin^n(x)$ or $\cos^n(x)$ with n odd, separate one factor and use substitution.
  6. Partial fractions: For rational functions where denominator degree exceeds numerator degree.

  7. Trigonometric substitution: For integrals involving square roots of quadratic expressions.

  8. Combine techniques: Complex integrals may require multiple techniques in sequence.

  9. When stuck, try a different approach: There’s often more than one way to solve an integral.

  10. Use technology wisely: Computer algebra systems can provide insights on difficult integrals.

Important Integration Formulas – Table

Basic Forms

FunctionIntegral
$x^n$$\frac{x^{n+1}}{n+1} + C$ (n ≠ -1)
$\frac{1}{x}$$\ln|x| + C$
$e^x$$e^x + C$
$a^x$$\frac{a^x}{\ln(a)} + C$

Trigonometric Functions

FunctionIntegral
$\sin(x)$$-\cos(x) + C$
$\cos(x)$$\sin(x) + C$
$\tan(x)$$\ln|\sec(x)| + C$
$\cot(x)$$\ln|\sin(x)| + C$
$\sec(x)$$\ln|\sec(x) + \tan(x)| + C$
$\csc(x)$$\ln|\csc(x) – \cot(x)| + C$

Special Forms

FunctionIntegral
$\frac{1}{a^2+x^2}$$\frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$
$\frac{1}{a^2-x^2}$$\frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right| + C$
$\frac{1}{\sqrt{a^2-x^2}}$$\arcsin\left(\frac{x}{a}\right) + C$
$\frac{1}{\sqrt{x^2-a^2}}$$\ln|x + \sqrt{x^2-a^2}| + C$
$\frac{1}{\sqrt{x^2+a^2}}$$\ln|x + \sqrt{x^2+a^2}| + C$
$\sqrt{a^2-x^2}$$\frac{x\sqrt{a^2-x^2}}{2} + \frac{a^2}{2}\arcsin\left(\frac{x}{a}\right) + C$
$\sqrt{x^2-a^2}$$\frac{x\sqrt{x^2-a^2}}{2} – \frac{a^2}{2}\ln|x + \sqrt{x^2-a^2}| + C$
$\sqrt{x^2+a^2}$$\frac{x\sqrt{x^2+a^2}}{2} + \frac{a^2}{2}\ln|x + \sqrt{x^2+a^2}| + C$
$\frac{1}{x\sqrt{x^2-a^2}}$$-\frac{1}{a}\ln\left|\frac{a+\sqrt{x^2-a^2}}{x}\right| + C$

Resources for Further Learning

Recommended Textbooks

  • “Calculus” by James Stewart
  • “Thomas’ Calculus” by George B. Thomas
  • “Calculus: Early Transcendentals” by Jon Rogawski

Online Resources

  • Paul’s Online Math Notes (comprehensive integration guides)
  • Khan Academy (video tutorials on integration techniques)
  • MIT OpenCourseWare (calculus lectures)
  • Symbolab (step-by-step integration calculator)
  • Wolfram Alpha (integration calculator with explanations)

Integration Practice Tools

  • Integral-Calculator.com (shows step-by-step solutions)
  • Desmos (for graphing functions and visualizing integrals)
  • Integration Bee problems (for challenging practice)

This comprehensive cheatsheet provides a quick reference for integration techniques and formulas in calculus. Remember that integration often requires creativity and patience – don’t be discouraged if you need to try multiple approaches to solve a particular integral.

Scroll to Top