Complete Chemistry Reactions Cheatsheet: Types, Mechanisms & Applications

Introduction to Chemical Reactions

Chemical reactions are processes where substances (reactants) transform into different substances (products) through the breaking and forming of chemical bonds. Understanding reaction types and mechanisms is fundamental to chemistry and enables predictions about how substances interact. This cheatsheet provides a comprehensive reference for identifying, balancing, and applying common chemical reactions across organic and inorganic chemistry.

Fundamental Concepts

Components of a Chemical Reaction

  • Reactants: Starting substances consumed in the reaction
  • Products: New substances formed by the reaction
  • Coefficients: Numbers preceding formulas that balance the equation
  • Reaction Arrow: Indicates direction of reaction (→, ⇌, ⇄)
  • Conditions: Temperature, pressure, catalysts, etc. (often shown above or below arrow)

Balancing Chemical Equations

  1. Identify all elements present in the reaction
  2. Balance elements one at a time (typically start with most complex molecules)
  3. Verify that atoms of each element are equal on both sides
  4. Use fractional coefficients for half-reactions if needed, then multiply to get whole numbers

Reaction Yield Calculations

  • Theoretical Yield: Maximum amount of product possible based on limiting reactant
  • Actual Yield: Amount of product actually obtained experimentally
  • Percent Yield: (Actual Yield ÷ Theoretical Yield) × 100%
  • Limiting Reactant: Reactant that determines the maximum amount of product

Types of Inorganic Reactions

Combination/Synthesis Reactions

General Form: A + B → AB

TypeGeneral EquationExample
Metal + NonmetalM + X → MX2Na + Cl₂ → 2NaCl
Nonmetal + NonmetalX + Y → XYH₂ + Cl₂ → 2HCl
Metal Oxide + WaterM₂O + H₂O → 2MOHNa₂O + H₂O → 2NaOH
Nonmetal Oxide + WaterX₂O + H₂O → H₂XO₃CO₂ + H₂O → H₂CO₃
Metal + Oxygen2M + O₂ → 2MO4Fe + 3O₂ → 2Fe₂O₃
Nonmetal + Oxygen2X + O₂ → 2XOS + O₂ → SO₂

Decomposition Reactions

General Form: AB → A + B

TypeGeneral EquationExample
Metal CarbonatesMCO₃ → MO + CO₂CaCO₃ → CaO + CO₂
Metal HydroxidesM(OH)₂ → MO + H₂OCu(OH)₂ → CuO + H₂O
Metal Chlorates2MClO₃ → 2MCl + 3O₂2KClO₃ → 2KCl + 3O₂
Hydrogen Peroxide2H₂O₂ → 2H₂O + O₂2H₂O₂ → 2H₂O + O₂
OxyacidsH₂SO₄ → H₂O + SO₃H₂CO₃ → H₂O + CO₂
Metal Oxides2HgO → 2Hg + O₂2HgO → 2Hg + O₂

Single Replacement/Displacement Reactions

General Form: A + BC → AC + B

TypeGeneral EquationExample
Metal replacing metalM₁ + M₂X → M₁X + M₂Zn + CuSO₄ → ZnSO₄ + Cu
Metal replacing hydrogenM + H₂O → MOH + H₂2Na + 2H₂O → 2NaOH + H₂
Metal replacing hydrogen (acid)M + 2HX → MX₂ + H₂Zn + 2HCl → ZnCl₂ + H₂
Halogen replacing halogenX₂ + 2MY → MX₂ + Y₂Cl₂ + 2NaBr → 2NaCl + Br₂

Activity Series of Metals (decreasing reactivity): Li > K > Ba > Sr > Ca > Na > Mg > Al > Mn > Zn > Cr > Fe > Cd > Co > Ni > Sn > Pb > H > Cu > Ag > Hg > Au

Activity Series of Halogens (decreasing reactivity): F₂ > Cl₂ > Br₂ > I₂

Double Replacement/Displacement Reactions

General Form: AB + CD → AD + CB

TypeGeneral EquationExample
PrecipitationAX + BY → AY↓ + BXAgNO₃ + NaCl → AgCl↓ + NaNO₃
Gas FormationAX + BY → AB + XY↑Na₂CO₃ + 2HCl → 2NaCl + H₂O + CO₂↑
NeutralizationHA + BOH → BA + H₂OHCl + NaOH → NaCl + H₂O
Water FormationH⁺ + OH⁻ → H₂OH₂SO₄ + 2KOH → K₂SO₄ + 2H₂O

Combustion Reactions

General Form: Fuel + O₂ → CO₂ + H₂O (+ energy)

TypeGeneral EquationExample
HydrocarbonC₍ₓ₎H₍ᵧ₎ + (x+y/4)O₂ → xCO₂ + (y/2)H₂OCH₄ + 2O₂ → CO₂ + 2H₂O
AlcoholC₍ₓ₎H₍ᵧ₎OH + O₂ → xCO₂ + (y+1)/2H₂OC₂H₅OH + 3O₂ → 2CO₂ + 3H₂O
CarbohydrateC₍ₓ₎(H₂O)₍ᵧ₎ + xO₂ → xCO₂ + yH₂OC₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O

Oxidation-Reduction (Redox) Reactions

Key Concepts:

  • Oxidation: Loss of electrons (increase in oxidation number)
  • Reduction: Gain of electrons (decrease in oxidation number)
  • Oxidizing Agent: Gets reduced and causes oxidation of another substance
  • Reducing Agent: Gets oxidized and causes reduction of another substance

Common Oxidizing Agents:

  • KMnO₄ (potassium permanganate)
  • K₂Cr₂O₇ (potassium dichromate)
  • H₂O₂ (hydrogen peroxide)
  • HNO₃ (nitric acid)
  • O₂ (oxygen)
  • F₂, Cl₂, Br₂, I₂ (halogens)

Common Reducing Agents:

  • Metals (Na, Mg, Zn, Fe, Al)
  • H₂ (hydrogen)
  • CO (carbon monoxide)
  • C (carbon)
  • SO₂ (sulfur dioxide)
  • Na₂S₂O₃ (sodium thiosulfate)

Balancing Redox Reactions in Acidic Solution:

  1. Write skeletal equation
  2. Split into half-reactions
  3. Balance elements other than O and H
  4. Balance O using H₂O
  5. Balance H using H⁺
  6. Balance charge using electrons
  7. Equalize electrons transferred in both half-reactions
  8. Add half-reactions
  9. Cancel identical species

Balancing Redox Reactions in Basic Solution:

  1. Follow steps 1-7 for acidic solution
  2. Add OH⁻ to both sides to neutralize H⁺ (for each H⁺, add one OH⁻)
  3. Form H₂O where H⁺ and OH⁻ appear on same side
  4. Cancel identical species

Acid-Base Reactions

Acid-Base Theories

TheoryDefinition of AcidDefinition of BaseExample
ArrheniusH⁺ donor in waterOH⁻ donor in waterHCl + NaOH → NaCl + H₂O
Brønsted-LowryProton (H⁺) donorProton (H⁺) acceptorNH₃ + H₂O ⇌ NH₄⁺ + OH⁻
LewisElectron pair acceptorElectron pair donorBF₃ + NH₃ → F₃B-NH₃

Conjugate Acid-Base Pairs

  • Conjugate acid: Formed when a base gains a proton
  • Conjugate base: Formed when an acid loses a proton

Examples:

  • HCl (acid) → H⁺ + Cl⁻ (conjugate base)
  • NH₃ (base) + H⁺ → NH₄⁺ (conjugate acid)

Acid-Base Strength

Relative Strength of Acids:

  1. Hydrohalic acids: HI > HBr > HCl > HF
  2. Oxoacids: Strength increases with:
    • More oxygen atoms: HClO₄ > HClO₃ > HClO₂ > HClO
    • More electronegative central atom: H₂SO₄ > H₂SeO₄

Relative Strength of Bases:

  1. Alkali metal hydroxides: LiOH < NaOH < KOH < RbOH < CsOH
  2. Organic amines: NH₃ < CH₃NH₂ < (CH₃)₂NH < (CH₃)₃N

Ka and Kb Values:

  • Strong acids: Ka > 1 (HCl, HNO₃, H₂SO₄, HBr, HI, HClO₄)
  • Weak acids: Ka < 1 (CH₃COOH, HF, H₂CO₃, HNO₂)
  • Strong bases: Kb > 1 (NaOH, KOH, Ca(OH)₂, Ba(OH)₂)
  • Weak bases: Kb < 1 (NH₃, organic amines)

Precipitation Reactions & Solubility Rules

General Solubility Rules

Compound TypeSolubilityExceptions
Alkali metal compoundsSolubleFew exceptions
Ammonium compoundsSolubleFew exceptions
Nitrates (NO₃⁻)SolubleNo exceptions
Acetates (CH₃COO⁻)SolubleFew exceptions
Chlorides, bromides, iodidesSolubleAg⁺, Pb²⁺, Hg₂²⁺
Sulfates (SO₄²⁻)SolubleCa²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Ag⁺
Carbonates (CO₃²⁻)InsolubleAlkali metals, NH₄⁺
Phosphates (PO₄³⁻)InsolubleAlkali metals, NH₄⁺
Hydroxides (OH⁻)InsolubleAlkali metals, Sr²⁺, Ba²⁺, Ca²⁺ (slightly)
Sulfides (S²⁻)InsolubleAlkali metals, NH₄⁺, Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺
Oxides (O²⁻)InsolubleMost dissolve in acid; alkali metal oxides form hydroxides in water

Common Ion Effect & Solubility Product (Ksp)

  • Ksp: Product of concentrations of ions in a saturated solution
  • Common Ion Effect: Decreases solubility when a common ion is added

Example:

  • For AgCl ⇌ Ag⁺ + Cl⁻, Ksp = [Ag⁺][Cl⁻]
  • Adding NaCl decreases AgCl solubility by increasing [Cl⁻]

Complexation Reactions

Formation of Complex Ions

  • Ligands: Electron pair donors that bind to metal ions
  • Coordination Number: Number of donor atoms bound to central metal ion

Common Ligands:

  • Monodentate: H₂O, NH₃, CN⁻, Cl⁻, OH⁻
  • Bidentate: C₂O₄²⁻ (oxalate), H₂NCH₂CH₂NH₂ (ethylenediamine)
  • Polydentate: EDTA⁴⁻

Examples:

  • Cu²⁺ + 4NH₃ → [Cu(NH₃)₄]²⁺ (tetraamminecopper(II))
  • Fe³⁺ + 6CN⁻ → [Fe(CN)₆]³⁻ (hexacyanoferrate(III))

Complex Ion Equilibria

  • Formation Constant (Kf): Measures stability of complex ion
  • Higher Kf = more stable complex

Example:

  • For Ag⁺ + 2NH₃ ⇌ [Ag(NH₃)₂]⁺, Kf = [[Ag(NH₃)₂]⁺]/([Ag⁺][NH₃]²)

Organic Reactions

Substitution Reactions

Nucleophilic Substitution (SN)

TypeMechanismRate LawStereochemistryExample
SN1Two-step: leaving group departs first, then nucleophile attacksRate = k[R-LG]Racemization(CH₃)₃C-Br + H₂O → (CH₃)₃C-OH + HBr
SN2One-step: nucleophile attacks as leaving group departsRate = k[R-LG][Nu]InversionCH₃CH₂Br + OH⁻ → CH₃CH₂OH + Br⁻

Electrophilic Aromatic Substitution (EAS)

ReactionReagentsExample
NitrationHNO₃, H₂SO₄C₆H₆ + HNO₃ + H₂SO₄ → C₆H₅NO₂ + H₂O
SulfonationSO₃, H₂SO₄C₆H₆ + SO₃ + H₂SO₄ → C₆H₅SO₃H
HalogenationX₂, FeX₃C₆H₆ + Cl₂ + FeCl₃ → C₆H₅Cl + HCl
Friedel-Crafts AlkylationR-X, AlCl₃C₆H₆ + CH₃Cl + AlCl₃ → C₆H₅CH₃ + HCl
Friedel-Crafts AcylationRCOX, AlCl₃C₆H₆ + CH₃COCl + AlCl₃ → C₆H₅COCH₃ + HCl

Effect of Substituents on EAS:

  • Activating groups (increase reaction rate): -NH₂, -NHR, -NR₂, -OH, -OR, -R
  • Deactivating groups (decrease reaction rate): -NO₂, -CN, -SO₃H, -COOH, -CHO, -COR, -COOR, -NH₃⁺
  • Ortho/para directors: -NH₂, -NHR, -NR₂, -OH, -OR, -R, -X (halogens)
  • Meta directors: -NO₂, -CN, -SO₃H, -COOH, -CHO, -COR, -COOR, -NH₃⁺

Addition Reactions

Addition to Alkenes

ReactionReagentsProductExample
HydrogenationH₂, Pt/Pd/NiAlkaneCH₂=CH₂ + H₂ → CH₃-CH₃
HalogenationX₂ (Cl₂, Br₂)DihaloalkaneCH₂=CH₂ + Br₂ → CH₂Br-CH₂Br
HydrohalogenationHXHaloalkaneCH₂=CH₂ + HBr → CH₃-CH₂Br
HydrationH₂O, H⁺AlcoholCH₂=CH₂ + H₂O → CH₃-CH₂OH
Oxymercuration-demercurationHg(OAc)₂, H₂O, NaBH₄AlcoholCH₂=CH₂ + Hg(OAc)₂ + H₂O → CH₃-CH₂OH
Hydroboration-oxidationBH₃, H₂O₂, OH⁻AlcoholCH₂=CH₂ + BH₃ → CH₃-CH₂OH
EpoxidationRCOOOH or H₂O₂EpoxideCH₂=CH₂ + RCOOOH → CH₂-CH₂(O)
OzonolysisO₃, then Zn/H₂OAldehydes/KetonesCH₃CH=CHCH₃ + O₃ → 2CH₃CHO

Markovnikov’s Rule: In addition of HX to alkene, H attaches to carbon with more hydrogen atoms, X to carbon with fewer hydrogen atoms

Anti-Markovnikov Addition: Occurs in hydroboration-oxidation (H attaches to carbon with fewer hydrogen atoms)

Elimination Reactions

TypeMechanismReagentsExample
E1Two-step: leaving group departs, then proton removedH₂O, heat, acid(CH₃)₃C-OH + H⁺ → (CH₃)₂C=CH₂ + H₂O + H⁺
E2One-step: base removes proton as leaving group departsStrong baseCH₃CH₂-CH(Br)-CH₃ + OH⁻ → CH₃CH=CH-CH₃ + Br⁻ + H₂O

Zaitsev’s Rule: In elimination reactions, the major product is the more substituted alkene (more stable)

Condensation Reactions

ReactionReagentsProductExample
Aldol CondensationAldehyde/ketone, baseβ-hydroxy aldehyde/ketone2CH₃CHO → CH₃CH(OH)CH₂CHO
Claisen CondensationEsters, strong baseβ-keto ester2CH₃COOCH₃ → CH₃COCH₂COOCH₃ + CH₃OH
EsterificationCarboxylic acid, alcohol, H⁺EsterCH₃COOH + CH₃OH ⇌ CH₃COOCH₃ + H₂O
Amide FormationCarboxylic acid, amineAmideCH₃COOH + NH₃ → CH₃CONH₂ + H₂O

Redox Reactions in Organic Chemistry

ReactionChangeReagentsExample
Oxidation of AlcoholsR-OH → R=OCrO₃, H₂SO₄ or PCCCH₃CH₂OH → CH₃CHO → CH₃COOH
Oxidation of AldehydesR-CHO → R-COOHAg₂O (Tollens’) or Cu²⁺ (Fehling’s)CH₃CHO + Ag₂O → CH₃COOH + 2Ag
Reduction of Aldehydes/KetonesC=O → C-OHNaBH₄ or LiAlH₄CH₃CHO + NaBH₄ → CH₃CH₂OH
Reduction of Carboxylic AcidsRCOOH → RCH₂OHLiAlH₄CH₃COOH + LiAlH₄ → CH₃CH₂OH

Polymerization Reactions

Addition Polymerization

  • Mechanism: Monomers with double bonds join end-to-end
  • Examples:
    • Ethylene → Polyethylene: n(CH₂=CH₂) → -(CH₂-CH₂)ₙ-
    • Styrene → Polystyrene: n(CH₂=CH-C₆H₅) → -(CH₂-CH(C₆H₅))ₙ-
    • Vinyl chloride → PVC: n(CH₂=CHCl) → -(CH₂-CHCl)ₙ-

Condensation Polymerization

  • Mechanism: Monomers join with loss of small molecules (H₂O, HCl, etc.)
  • Examples:
    • Nylon 6,6: n(HOOC-(CH₂)₄-COOH) + n(H₂N-(CH₂)₆-NH₂) → -[OC-(CH₂)₄-CO-NH-(CH₂)₆-NH]ₙ- + 2nH₂O
    • Polyester (PET): n(HOOC-C₆H₄-COOH) + n(HO-CH₂-CH₂-OH) → -[OC-C₆H₄-CO-O-CH₂-CH₂-O]ₙ- + 2nH₂O

Electrochemical Reactions

Galvanic/Voltaic Cells

  • Anode: Oxidation occurs (electrons generated)
  • Cathode: Reduction occurs (electrons consumed)
  • Example: Zn|Zn²⁺||Cu²⁺|Cu
    • Anode (oxidation): Zn → Zn²⁺ + 2e⁻
    • Cathode (reduction): Cu²⁺ + 2e⁻ → Cu

Electrolytic Cells

  • Anode: Oxidation occurs (electrons leave cell)
  • Cathode: Reduction occurs (electrons enter cell)
  • Example: Electrolysis of molten NaCl
    • Anode (oxidation): 2Cl⁻ → Cl₂ + 2e⁻
    • Cathode (reduction): 2Na⁺ + 2e⁻ → 2Na

Nernst Equation

  • E = E° – (RT/nF)ln(Q)
  • At 25°C: E = E° – (0.0592/n)log(Q)
  • E° = standard cell potential
  • n = number of electrons transferred
  • Q = reaction quotient

Nuclear Reactions

Types of Nuclear Decay

Decay TypeParticle EmittedChange in NucleusExample
Alpha (α)₂⁴He nucleusZ → Z-2, A → A-4₂₃₈U → ₂₃₄Th + ₄He
Beta (β⁻)ElectronZ → Z+1, A unchanged₁₄C → ₁₄N + ₀e
Positron (β⁺)PositronZ → Z-1, A unchanged₁₁C → ₁₁B + ₀e
Gamma (γ)PhotonNo change₆₀*Co → ₆₀Co + γ
Electron captureNone (absorbs e⁻)Z → Z-1, A unchanged₇Be + ₀e → ₇Li
Neutron emissionNeutronZ unchanged, A → A-1₁⁷N → ₁₆N + ₁n

Nuclear Equations

  • Fission: ₂₃₅U + ₁n → ₁₄₁Ba + ₉₂Kr + 3₁n + energy
  • Fusion: ₂H + ₃H → ₄He + ₁n + energy

Chemical Kinetics

Rate Laws

  • First-Order: Rate = k[A], t₁/₂ = 0.693/k
  • Second-Order: Rate = k[A]², t₁/₂ = 1/(k[A]₀)
  • Zero-Order: Rate = k, t₁/₂ = [A]₀/2k

Determining Reaction Order

  • Method of Initial Rates: Compare rates at different initial concentrations
  • Integrated Rate Law Plots:
    • First-Order: ln[A] vs t gives straight line
    • Second-Order: 1/[A] vs t gives straight line
    • Zero-Order: [A] vs t gives straight line

Factors Affecting Reaction Rate

  • Temperature: Higher T → faster rate (Arrhenius equation)
  • Catalysts: Lower activation energy → faster rate
  • Concentration: Higher conc. → faster rate (except zero-order)
  • Surface Area: More SA → faster rate
  • Pressure: Higher P → faster rate (for gaseous reactions)

Reaction Mechanisms & Intermediates

Common Reaction Intermediates

IntermediateStructureExample Reaction
CarbocationR₃C⁺SN1, E1 reactions
CarbanionR₃C⁻Nucleophilic addition
Free RadicalR₃C•Halogenation of alkanes
CarbeneR₂C:Cyclopropanation
NitreneR-N:Aziridination

Multi-Step Reaction Mechanisms

  • Rate-Determining Step: Slowest step that determines overall rate
  • Steady-State Approximation: Intermediates consumed as quickly as formed

Spectroscopic Analysis of Reactions

IR Spectroscopy Functional Group Identification

Functional GroupWavenumber (cm⁻¹)Characteristic
Alkanes (C-H stretch)2850-2960Strong
Alkenes (C=C)1620-1680Medium
Alkynes (C≡C)2100-2260Medium to weak
Aromatics (C=C)1450-1600Medium, multiple bands
Alcohols (O-H)3200-3600Strong, broad
Carboxylic acids (O-H)2500-3300Strong, very broad
Carbonyls (C=O)1670-1820Strong
Amines (N-H)3300-3500Medium
Nitriles (C≡N)2210-2260Medium

NMR Spectroscopy in Reaction Monitoring

  • ¹H NMR: Tracks changes in proton environments
  • ¹³C NMR: Monitors carbon skeleton changes
  • Time-resolved NMR: Follows reaction kinetics in real-time

Green Chemistry & Sustainable Reactions

Principles of Green Chemistry

  1. Prevention: Better to prevent waste than treat it
  2. Atom Economy: Maximize incorporation of reactants into final product
  3. Safer Reagents: Use less hazardous chemical synthesis
  4. Design Safer Chemicals: Maintain efficacy while reducing toxicity
  5. Safer Solvents: Use safer solvents and auxiliaries
  6. Energy Efficiency: Minimize energy requirements
  7. Renewable Feedstocks: Use renewable raw materials
  8. Reduce Derivatives: Minimize or avoid derivatization
  9. Catalysis: Catalytic reagents superior to stoichiometric reagents
  10. Degradation: Design for degradation
  11. Real-time Analysis: Real-time monitoring for pollution prevention
  12. Accident Prevention: Minimize potential for accidents

Sustainable Reaction Examples

  • Aqueous-phase reactions: Replaces organic solvents with water
  • Solvent-free reactions: Eliminates solvent waste
  • Catalytic reactions: Reduces energy requirements and waste
  • Microbial transformations: Environmentally friendly alternatives
  • Electrochemical reactions: Avoids chemical oxidants/reductants
  • Photochemical reactions: Uses light energy instead of reagents

Resources for Further Learning

Chemical Reaction Databases

  • NIST Chemical Kinetics Database
  • Chemical Reactivity Database (CRD)
  • Organic Reactions Database
  • Reaxys
  • SciFinder

Important Reference Books

  • March’s Advanced Organic Chemistry
  • Organic Chemistry by Clayden, Greeves, Warren
  • Inorganic Chemistry by Shriver & Atkins
  • Physical Chemistry by Atkins & de Paula
  • Comprehensive Organic Transformations by Larock

This cheatsheet provides a structured reference for chemical reactions across various disciplines. For specific reaction details, always consult appropriate reference texts or databases for the most accurate and up-to-date information.

Scroll to Top