Calculus Cheatsheet: Mastering Sequences and Series Convergence Tests

Introduction

Sequences and series convergence tests are essential tools in calculus that help determine whether infinite sums approach a finite value. Understanding these tests is crucial for analyzing functions, solving differential equations, and approximating complex expressions. This cheatsheet provides a comprehensive reference for the most important convergence tests and their applications.

Core Concepts of Sequences and Series

Sequences

  • A sequence is an ordered list of numbers: {a₁, a₂, a₃, …} or {aₙ}
  • A sequence converges if lim(n→∞) aₙ exists and equals a finite value
  • A sequence diverges if the limit doesn’t exist or equals ±∞

Series

  • A series is the sum of terms in a sequence: a₁ + a₂ + a₃ + … or Σaₙ
  • Convergent series: The sum approaches a finite value as n→∞
  • Divergent series: The sum grows without bound or oscillates
  • Partial sum: Sₙ = a₁ + a₂ + … + aₙ
  • A series converges if lim(n→∞) Sₙ exists and equals a finite value

Convergence Tests for Series

1. Divergence Test (nth Term Test)

  • Statement: If lim(n→∞) aₙ ≠ 0, then Σaₙ diverges
  • Contrapositive: If Σaₙ converges, then lim(n→∞) aₙ = 0
  • Note: If lim(n→∞) aₙ = 0, the series may still diverge
  • Example: Harmonic series Σ(1/n) diverges despite lim(n→∞) 1/n = 0

2. Geometric Series Test

  • Form: Σarⁿ⁻¹ from n=1 to ∞
  • Convergence: Converges if |r| < 1
  • Sum: If |r| < 1, then Σarⁿ⁻¹ = a/(1-r)
  • Example: Σ(1/2)ⁿ converges to 1/(1-1/2) = 2

3. p-Series Test

  • Form: Σ(1/nᵖ) from n=1 to ∞
  • Convergence:
    • Converges if p > 1
    • Diverges if p ≤ 1
  • Examples:
    • Σ(1/n²) converges (p = 2 > 1)
    • Σ(1/n) diverges (p = 1 ≤ 1)

4. Comparison Test

  • Statement: If 0 ≤ aₙ ≤ bₙ for all n ≥ N:
    • If Σbₙ converges, then Σaₙ converges
    • If Σaₙ diverges, then Σbₙ diverges
  • Best used: When series terms can be bounded by a known series

5. Limit Comparison Test

  • Statement: If aₙ, bₙ > 0 and lim(n→∞) aₙ/bₙ = c where c > 0:
    • Σaₙ and Σbₙ either both converge or both diverge
  • Best used: When two series behave similarly as n→∞
  • Example: Compare Σ(n/(n²+1)) with Σ(1/n)

6. Ratio Test

  • Statement: Let L = lim(n→∞) |aₙ₊₁/aₙ|
    • If L < 1: Series converges absolutely
    • If L > 1: Series diverges
    • If L = 1: Test is inconclusive
  • Best used: For series with factorials or exponentials
  • Example: Σ(2ⁿ/n!) converges as L = lim(n→∞) 2/(n+1) = 0 < 1

7. Root Test

  • Statement: Let L = lim(n→∞) ⁿ√|aₙ|
    • If L < 1: Series converges absolutely
    • If L > 1: Series diverges
    • If L = 1: Test is inconclusive
  • Best used: When aₙ involves powers like nⁿ
  • Example: Σ(1/nⁿ) converges as L = lim(n→∞) (1/n) = 0 < 1

8. Integral Test

  • Statement: If f(x) is positive, continuous, and decreasing for x ≥ N, and aₙ = f(n), then:
    • Σaₙ converges if and only if ∫ₙ^∞ f(x)dx converges
  • Best used: When aₙ can be represented as a continuous function
  • Example: For Σ(1/n²), use f(x) = 1/x² and ∫₁^∞ (1/x²)dx = 1

9. Alternating Series Test (Leibniz Test)

  • Form: Σ(-1)ⁿ⁻¹bₙ or Σ(-1)ⁿbₙ where bₙ > 0
  • Convergence: Converges if:
    • bₙ₊₁ ≤ bₙ for all n ≥ N (decreasing sequence)
    • lim(n→∞) bₙ = 0
  • Error bound: |Sₙ – S| ≤ bₙ₊₁
  • Example: Σ(-1)ⁿ⁻¹(1/n) converges (alternating harmonic series)

10. Absolute Convergence Test

  • Statement: If Σ|aₙ| converges, then Σaₙ converges
  • Note: A series can converge conditionally (Σaₙ converges but Σ|aₙ| diverges)
  • Best used: After using ratio or root test on |aₙ|
  • Example: Σ(-1)ⁿ⁻¹(1/n) converges conditionally because Σ(1/n) diverges

11. Direct Comparison Test

  • Statement: If 0 ≤ aₙ ≤ bₙ for all n ≥ N:
    • If Σbₙ converges, then Σaₙ converges
    • If Σaₙ diverges, then Σbₙ diverges
  • Example: Compare Σ(1/(n²+n)) with Σ(1/n²)

12. Cauchy Condensation Test

  • Statement: For a non-increasing sequence aₙ > 0, Σaₙ converges if and only if Σ2ᵏa₂ᵏ converges
  • Best used: For series where comparison is difficult
  • Example: For Σ(1/n), check Σ2ᵏ(1/2ᵏ) = Σ1, which diverges

Comparison Table of Convergence Tests

Test NameWhen to UseLimitationsExample Series
Divergence TestFirst check for any seriesOnly proves divergenceΣ(n/(n+1))
Geometric SeriesWhen aₙ = arⁿ⁻¹Only for geometric seriesΣ(3·2⁻ⁿ)
p-SeriesWhen aₙ = 1/nᵖOnly for p-seriesΣ(1/n³)
ComparisonWhen terms comparable to known seriesRequires finding suitable series to compareΣ(1/(n²+3))
Limit ComparisonWhen ratio of terms approaches non-zero limitRequires finding suitable series to compareΣ(n²/(n³+1))
Ratio TestWhen terms involve factorials/powersInconclusive if limit equals 1Σ(nⁿ/n!)
Root TestWhen terms involve nth powersInconclusive if limit equals a 1Σ((0.9)ⁿ)
Integral TestWhen series matches integrable functionRequires calculus of integralsΣ(1/(n·ln²(n)))
Alternating SeriesFor alternating sign seriesOnly for alternating seriesΣ((-1)ⁿ⁻¹/n²)
Absolute ConvergenceAfter trying ratio/root testMay need to check conditional convergenceΣ((-1)ⁿ/n²)

Common Challenges and Solutions

Challenge 1: Choosing the Right Test

  • Solution: Follow a systematic approach:
    1. Check if lim(n→∞) aₙ = 0 (if not, series diverges)
    2. Identify series type (geometric, alternating, etc.)
    3. For positive series, try comparison, ratio, or integral tests
    4. For alternating series, check the alternating series test first

Challenge 2: Dealing with Complex Terms

  • Solution:
    • Break into simpler components
    • Use algebraic manipulations
    • Apply limits to simplify expressions
    • Example: For Σ(n²+1)/(n³+n), simplify to Σ(1/n + 1/n³) as n→∞

Challenge 3: Inconclusive Tests

  • Solution:
    • If ratio/root test gives L = 1, try another test
    • Combine multiple tests when necessary
    • Example: For Σ(1/n·ln(n)), ratio test is inconclusive, but integral test works

Challenge 4: Determining Absolute vs. Conditional Convergence

  • Solution:
    • First check if Σ|aₙ| converges (absolute convergence)
    • If Σ|aₙ| diverges but series contains alternating signs, check for conditional convergence
    • Example: Σ(-1)ⁿ⁻¹/n is conditionally convergent

Best Practices and Tips

Tip 1: Simplification Strategy

  • Always simplify terms before applying tests
  • Use asymptotic behavior (what happens as n→∞)
  • Focus on highest-order terms for large n
  • Example: Σ(n²+n)/(n³+5) ≈ Σ(n²/n³) = Σ(1/n) as n→∞

Tip 2: Test Selection Guide

  • For series with factorials: Ratio Test
  • For series with nth powers: Root Test
  • For alternating series: Alternating Series Test
  • For positive series comparable to known series: Comparison Tests
  • For series expressible as a function: Integral Test

Tip 3: Common Convergent Series

  • Σ(1/n²) converges to π²/6
  • Σ(1/n(n+1)) converges to 1
  • Σ(r^n) converges to 1/(1-r) for |r| < 1
  • Σ((-1)ⁿ⁻¹/n) converges to ln(2)

Tip 4: Common Divergent Series

  • Σ(1/n) (harmonic series)
  • Σ(1/n^p) for p ≤ 1
  • Σ(n/(n+1))
  • Σ(1/ln(n))

Resources for Further Learning

Textbooks

  • Calculus by James Stewart
  • Thomas’ Calculus by George B. Thomas
  • Advanced Calculus by Lynn H. Loomis and Shlomo Sternberg

Online Resources

  • Khan Academy: Sequences and Series
  • MIT OpenCourseWare: Single Variable Calculus
  • Paul’s Online Math Notes: Calculus II
  • 3Blue1Brown YouTube channel for visual intuition

Practice Resources

  • Brilliant.org (interactive calculus problems)
  • Wolfram Alpha (verify solutions)
  • PatrickJMT YouTube videos for worked examples

Quick Reference: Series Convergence Flowchart

  1. Apply Divergence Test

    • If lim(n→∞) aₙ ≠ 0 → DIVERGES
    • If lim(n→∞) aₙ = 0 → CONTINUE TESTING
  2. Check series type:

    • If geometric series (ar^(n-1)) → CONVERGES if |r| < 1
    • If p-series (1/n^p) → CONVERGES if p > 1
    • If alternating → Try Alternating Series Test
  3. For positive series:

    • Try Ratio Test
    • Try Root Test
    • Try Comparison Tests
    • Try Integral Test
  4. If alternating:

    • Check absolute convergence first
    • If absolutely convergent → CONVERGES
    • If not, check Alternating Series Test conditions
Scroll to Top