Calculus: Common Derivatives Cheatsheet

Basic Differentiation Rules

RuleFormulaExample
Constant Rule$\frac{d}{dx}(c) = 0$$\frac{d}{dx}(7) = 0$
Power Rule$\frac{d}{dx}(x^n) = nx^{n-1}$$\frac{d}{dx}(x^4) = 4x^3$
Constant Multiple Rule$\frac{d}{dx}[cf(x)] = c \cdot f'(x)$$\frac{d}{dx}(3x^2) = 3 \cdot 2x = 6x$
Sum/Difference Rule$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$\frac{d}{dx}(x^3 + 5x) = 3x^2 + 5$
Product Rule$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$\frac{d}{dx}(x^2 \cdot \sin x) = 2x\sin x + x^2\cos x$
Quotient Rule$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) – f(x)g'(x)}{[g(x)]^2}$$\frac{d}{dx}\left(\frac{x^2}{x+1}\right) = \frac{2x(x+1) – x^2 \cdot 1}{(x+1)^2} = \frac{2x^2+2x-x^2}{(x+1)^2} = \frac{x^2+2x}{(x+1)^2}$
Chain Rule$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x = 2x\cos(x^2)$

Common Function Derivatives

Basic Functions

FunctionDerivative
$c$ (constant)$0$
$x$$1$
$x^n$$nx^{n-1}$
$\sqrt{x}$$\frac{1}{2\sqrt{x}}$
$\frac{1}{x}$$-\frac{1}{x^2}$
$\frac{1}{x^n}$$-\frac{n}{x^{n+1}}$

Exponential and Logarithmic Functions

FunctionDerivative
$e^x$$e^x$
$a^x$$a^x \ln(a)$
$\ln(x)$$\frac{1}{x}$
$\log_a(x)$$\frac{1}{x \ln(a)}$
$e^{kx}$$ke^{kx}$
$\ln(ax)$$\frac{1}{x}$

Trigonometric Functions

FunctionDerivative
$\sin(x)$$\cos(x)$
$\cos(x)$$-\sin(x)$
$\tan(x)$$\sec^2(x)$
$\cot(x)$$-\csc^2(x)$
$\sec(x)$$\sec(x)\tan(x)$
$\csc(x)$$-\csc(x)\cot(x)$

Inverse Trigonometric Functions

FunctionDerivative
$\arcsin(x)$$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$$-\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$$\frac{1}{1+x^2}$
$\text{arccot}(x)$$-\frac{1}{1+x^2}$
$\text{arcsec}(x)$$\frac{1}{
$\text{arccsc}(x)$$-\frac{1}{

Hyperbolic Functions

FunctionDerivative
$\sinh(x)$$\cosh(x)$
$\cosh(x)$$\sinh(x)$
$\tanh(x)$$\text{sech}^2(x)$
$\coth(x)$$-\text{csch}^2(x)$
$\text{sech}(x)$$-\text{sech}(x)\tanh(x)$
$\text{csch}(x)$$-\text{csch}(x)\coth(x)$

Common Derivative Patterns with Chain Rule

Exponential Functions

FunctionDerivative
$e^{g(x)}$$e^{g(x)} \cdot g'(x)$
$a^{g(x)}$$a^{g(x)} \cdot \ln(a) \cdot g'(x)$
$\ln(g(x))$$\frac{g'(x)}{g(x)}$
$\log_a(g(x))$$\frac{g'(x)}{g(x) \cdot \ln(a)}$

Trigonometric Functions

FunctionDerivative
$\sin(g(x))$$\cos(g(x)) \cdot g'(x)$
$\cos(g(x))$$-\sin(g(x)) \cdot g'(x)$
$\tan(g(x))$$\sec^2(g(x)) \cdot g'(x)$
$\cot(g(x))$$-\csc^2(g(x)) \cdot g'(x)$
$\sec(g(x))$$\sec(g(x))\tan(g(x)) \cdot g'(x)$
$\csc(g(x))$$-\csc(g(x))\cot(g(x)) \cdot g'(x)$

Inverse Trigonometric Functions

FunctionDerivative
$\arcsin(g(x))$$\frac{g'(x)}{\sqrt{1-[g(x)]^2}}$
$\arccos(g(x))$$-\frac{g'(x)}{\sqrt{1-[g(x)]^2}}$
$\arctan(g(x))$$\frac{g'(x)}{1+[g(x)]^2}$

Powers and Roots

FunctionDerivative
$[g(x)]^n$$n[g(x)]^{n-1} \cdot g'(x)$
$\sqrt{g(x)}$$\frac{g'(x)}{2\sqrt{g(x)}}$
$\frac{1}{g(x)}$$-\frac{g'(x)}{[g(x)]^2}$

Common Composite Functions

FunctionDerivative
$(ax+b)^n$$an(ax+b)^{n-1}$
$e^{ax+b}$$ae^{ax+b}$
$\ln(ax+b)$$\frac{a}{ax+b}$
$\sin(ax+b)$$a\cos(ax+b)$
$\cos(ax+b)$$-a\sin(ax+b)$
$\tan(ax+b)$$a\sec^2(ax+b)$
$\arcsin(ax+b)$$\frac{a}{\sqrt{1-(ax+b)^2}}$
$\arctan(ax+b)$$\frac{a}{1+(ax+b)^2}$
$\sqrt{ax+b}$$\frac{a}{2\sqrt{ax+b}}$

Special Function Derivatives

FunctionDerivative
$x^x$$x^x(1+\ln x)$
$\sin^2(x)$$2\sin(x)\cos(x)$
$\cos^2(x)$$-2\cos(x)\sin(x)$
$\sin(x)\cos(x)$$\cos^2(x)-\sin^2(x)$
$e^x\sin(x)$$e^x\sin(x)+e^x\cos(x)$
$\ln(x^n)$$\frac{n}{x}$
$\ln(\sin x)$$\cot(x)$
$\ln(\cos x)$$-\tan(x)$
$\sin^{-1}(x)$$\frac{1}{\sqrt{1-x^2}}$
$\sqrt{1-x^2}$$\frac{-x}{\sqrt{1-x^2}}$
$\sqrt{a^2-x^2}$$\frac{-x}{\sqrt{a^2-x^2}}$
$\sqrt{x^2+a^2}$$\frac{x}{\sqrt{x^2+a^2}}$
$\sqrt{x^2-a^2}$$\frac{x}{\sqrt{x^2-a^2}}$

Derivatives Involving Multiple Rules

FunctionDerivative
$\sin^n(x)$$n\sin^{n-1}(x)\cos(x)$
$\cos^n(x)$$-n\cos^{n-1}(x)\sin(x)$
$\tan^n(x)$$n\tan^{n-1}(x)\sec^2(x)$
$x^n\sin(x)$$nx^{n-1}\sin(x) + x^n\cos(x)$
$x^n\cos(x)$$nx^{n-1}\cos(x) – x^n\sin(x)$
$e^x\ln(x)$$e^x\ln(x) + \frac{e^x}{x}$
$\frac{f(x)}{g(x)}$$\frac{f'(x)g(x) – f(x)g'(x)}{[g(x)]^2}$
$\ln(f(x)g(x))$$\frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)}$
$f(x)^{g(x)}$$f(x)^{g(x)}\left[g'(x)\ln(f(x)) + \frac{g(x)f'(x)}{f(x)}\right]$

Derivative Shortcuts for Common Forms

FunctionDerivative
$u \cdot v$$u’ \cdot v + u \cdot v’$
$\frac{u}{v}$$\frac{u’ \cdot v – u \cdot v’}{v^2}$
$u \circ v$$(u’ \circ v) \cdot v’$
$u^n$$n \cdot u^{n-1} \cdot u’$
$e^u$$e^u \cdot u’$
$\ln(u)$$\frac{u’}{u}$
$\sin(u)$$\cos(u) \cdot u’$
$\cos(u)$$-\sin(u) \cdot u’$

Derivatives of Parametric Equations

For x = f(t) and y = g(t):

$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$ (provided $f'(t) \neq 0$)

$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$

Derivatives of Implicit Functions

For an equation F(x,y) = 0:

  1. Differentiate both sides with respect to x
  2. Remember y is a function of x, so use the chain rule for terms with y
  3. Solve for $\frac{dy}{dx}$

Example: For $x^2 + y^2 = 25$

  • Differentiate: $2x + 2y\frac{dy}{dx} = 0$
  • Solve: $\frac{dy}{dx} = -\frac{x}{y}$

Logarithmic Differentiation

For functions with products, quotients, or variables in exponents:

  1. Take natural logarithm of both sides
  2. Use logarithm properties to simplify
  3. Differentiate both sides
  4. Solve for the derivative

Example: For $y = x^x$

  • Take ln: $\ln(y) = \ln(x^x) = x\ln(x)$
  • Differentiate: $\frac{1}{y}\frac{dy}{dx} = \ln(x) + 1$
  • Solve: $\frac{dy}{dx} = y(\ln(x) + 1) = x^x(\ln(x) + 1)$

Derivative Applications and Formulas

Tangent and Normal Lines

  • Slope of tangent line at point (a, f(a)): $m_{tangent} = f'(a)$
  • Tangent line equation: $y – f(a) = f'(a)(x – a)$
  • Slope of normal line: $m_{normal} = -\frac{1}{f'(a)}$
  • Normal line equation: $y – f(a) = -\frac{1}{f'(a)}(x – a)$

Motion Formulas

For position function s(t):

  • Velocity: $v(t) = s'(t)$
  • Acceleration: $a(t) = v'(t) = s”(t)$
  • Jerk: $j(t) = a'(t) = v”(t) = s”'(t)$

Related Rates

When variables x and y are related and changing with time:

  • Use the chain rule: $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$

Linear Approximation

Approximating f(x) near a point a:

  • $f(x) \approx f(a) + f'(a)(x – a)$

Optimization

Finding extrema:

  • Critical points: Set $f'(x) = 0$
  • Second derivative test:
    • If $f”(x) > 0$: Local minimum
    • If $f”(x) < 0$: Local maximum
    • If $f”(x) = 0$: Inconclusive (use first derivative test)

Mnemonic Devices for Remembering Derivatives

  • Power Rule: “Bring the power down, subtract 1 from the power”
  • Exponential e^x: “e^x stays the same”
  • Sine and Cosine: “Sine becomes cosine, cosine becomes negative sine”
  • Product Rule: “First times derivative of second plus second times derivative of first”
  • Quotient Rule: “Bottom times derivative of top minus top times derivative of bottom, all over bottom squared”
  • Chain Rule: “Outside function’s derivative evaluated at inside function, times inside function’s derivative”

This comprehensive cheatsheet covers the twelve most common derivative patterns and rules used in calculus. Keep it handy for quick reference during problem-solving or when working with complex derivative applications.

Scroll to Top