Basic Operations and Properties
Order of Operations (PEMDAS)
- Parentheses (and other grouping symbols)
- Exponents (and roots)
- Multiplication and Division (from left to right)
- Addition and Subtraction (from left to right)
Properties of Real Numbers
Property | Description | Example |
---|---|---|
Commutative Property | $a + b = b + a$ <br> $a \times b = b \times a$ | $3 + 5 = 5 + 3$ <br> $4 \times 7 = 7 \times 4$ |
Associative Property | $(a + b) + c = a + (b + c)$ <br> $(a \times b) \times c = a \times (b \times c)$ | $(2 + 3) + 4 = 2 + (3 + 4)$ <br> $(2 \times 3) \times 4 = 2 \times (3 \times 4)$ |
Distributive Property | $a \times (b + c) = a \times b + a \times c$ | $3 \times (4 + 5) = 3 \times 4 + 3 \times 5$ |
Identity Property | $a + 0 = a$ <br> $a \times 1 = a$ | $7 + 0 = 7$ <br> $7 \times 1 = 7$ |
Inverse Property | $a + (-a) = 0$ <br> $a \times \frac{1}{a} = 1$ (for $a \neq 0$) | $5 + (-5) = 0$ <br> $5 \times \frac{1}{5} = 1$ |
Zero Property | $a \times 0 = 0$ | $7 \times 0 = 0$ |
Exponents and Radicals
Laws of Exponents
Rule | Formula | Example |
---|---|---|
Product Rule | $a^m \times a^n = a^{m+n}$ | $2^3 \times 2^4 = 2^7 = 128$ |
Quotient Rule | $\frac{a^m}{a^n} = a^{m-n}$ | $\frac{2^7}{2^3} = 2^4 = 16$ |
Power of a Power | $(a^m)^n = a^{m \times n}$ | $(2^3)^2 = 2^6 = 64$ |
Power of a Product | $(a \times b)^n = a^n \times b^n$ | $(2 \times 3)^2 = 2^2 \times 3^2 = 36$ |
Power of a Quotient | $(\frac{a}{b})^n = \frac{a^n}{b^n}$ | $(\frac{4}{2})^3 = \frac{4^3}{2^3} = \frac{64}{8} = 8$ |
Negative Exponent | $a^{-n} = \frac{1}{a^n}$ | $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ |
Zero Exponent | $a^0 = 1$ (for $a \neq 0$) | $5^0 = 1$ |
Fractional Exponent | $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ | $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ |
Rules of Radicals
Rule | Formula | Example |
---|---|---|
Product Rule | $\sqrt[n]{a \times b} = \sqrt[n]{a} \times \sqrt[n]{b}$ | $\sqrt{4 \times 9} = \sqrt{4} \times \sqrt{9} = 2 \times 3 = 6$ |
Quotient Rule | $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ | $\sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2}$ |
Power Rule | $\sqrt[n]{a^m} = (\sqrt[n]{a})^m$ | $\sqrt{9^2} = (\sqrt{9})^2 = 3^2 = 9$ |
Combining Like Radicals | $a\sqrt{n} + b\sqrt{n} = (a+b)\sqrt{n}$ | $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$ |
Rationalizing Denominators | $\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$ | $\frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$ |
Polynomials
Basic Definitions
- Monomial: Expression with one term (e.g., $3x^2$)
- Binomial: Expression with two terms (e.g., $x^2 + 2x$)
- Trinomial: Expression with three terms (e.g., $x^2 + 2x + 1$)
- Polynomial: Expression with multiple terms (e.g., $ax^n + bx^{n-1} + … + k$)
Special Products
Formula | Expansion |
---|---|
$(a + b)^2$ | $a^2 + 2ab + b^2$ |
$(a – b)^2$ | $a^2 – 2ab + b^2$ |
$(a + b)(a – b)$ | $a^2 – b^2$ |
$(a + b)^3$ | $a^3 + 3a^2b + 3ab^2 + b^3$ |
$(a – b)^3$ | $a^3 – 3a^2b + 3ab^2 – b^3$ |
$(a + b + c)^2$ | $a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$ |
Factoring Formulas
Expression | Factorization |
---|---|
$a^2 + 2ab + b^2$ | $(a + b)^2$ |
$a^2 – 2ab + b^2$ | $(a – b)^2$ |
$a^2 – b^2$ | $(a + b)(a – b)$ |
$a^3 + b^3$ | $(a + b)(a^2 – ab + b^2)$ |
$a^3 – b^3$ | $(a – b)(a^2 + ab + b^2)$ |
$a^n – b^n$ (n even) | $(a – b)(a^{n-1} + a^{n-2}b + … + ab^{n-2} + b^{n-1})$ |
$a^n + b^n$ (n odd) | $(a + b)(a^{n-1} – a^{n-2}b + … – ab^{n-2} + b^{n-1})$ |
Polynomial Division
Long division process:
- Arrange polynomials in descending order
- Divide the first term of the dividend by the first term of the divisor
- Multiply the divisor by the result from step 2
- Subtract this product from the dividend
- Repeat with the remainder as the new dividend until the remainder degree is less than the divisor degree
Linear Equations and Inequalities
Linear Equation (Standard Form)
$ax + b = 0$ where $a \neq 0$
Solution: $x = -\frac{b}{a}$
Linear Equation (Point-Slope Form)
$y – y_1 = m(x – x_1)$ where $m$ is the slope and $(x_1, y_1)$ is a point on the line
Linear Equation (Slope-Intercept Form)
$y = mx + b$ where $m$ is the slope and $b$ is the y-intercept
Linear Equation (Two-Point Form)
$\frac{y – y_1}{y_2 – y_1} = \frac{x – x_1}{x_2 – x_1}$ where $(x_1, y_1)$ and $(x_2, y_2)$ are two points on the line
Slope Formula
$m = \frac{y_2 – y_1}{x_2 – x_1}$ where $(x_1, y_1)$ and $(x_2, y_2)$ are two points on the line
Linear Inequality
$ax + b < 0$ or $ax + b > 0$ or $ax + b \leq 0$ or $ax + b \geq 0$ where $a \neq 0$
Note: When multiplying or dividing by a negative number, reverse the inequality sign.
Systems of Linear Equations
Two Equations with Two Unknowns
\begin{align} a_1x + b_1y &= c_1\ a_2x + b_2y &= c_2 \end{align}
Solution by Substitution
- Solve one equation for one variable
- Substitute into the other equation
- Solve for the remaining variable
- Substitute back to find the other variable
Solution by Elimination
- Multiply equations to make coefficients of one variable equal in magnitude
- Add or subtract equations to eliminate one variable
- Solve for the remaining variable
- Substitute back to find the other variable
Solutions by Cramers Rule
\begin{align} x = \frac{D_x}{D}, y = \frac{D_y}{D} \end{align}
where: \begin{align} D = \begin{vmatrix} a_1 & b_1 \ a_2 & b_2 \end{vmatrix} = a_1b_2 – a_2b_1\ D_x = \begin{vmatrix} c_1 & b_1 \ c_2 & b_2 \end{vmatrix} = c_1b_2 – c_2b_1\ D_y = \begin{vmatrix} a_1 & c_1 \ a_2 & c_2 \end{vmatrix} = a_1c_2 – a_2c_1 \end{align}
Quadratic Equations and Functions
Standard Form
$ax^2 + bx + c = 0$ where $a \neq 0$
Quadratic Formula
$x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}$
Discriminant
$\Delta = b^2 – 4ac$
- If $\Delta > 0$: Two distinct real roots
- If $\Delta = 0$: One real root (repeated)
- If $\Delta < 0$: Two complex conjugate roots
Completing the Square
- Rewrite as $ax^2 + bx = -c$
- Divide by $a$: $x^2 + \frac{b}{a}x = -\frac{c}{a}$
- Add $(\frac{b}{2a})^2$ to both sides: $x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 = -\frac{c}{a} + (\frac{b}{2a})^2$
- Left side is now $(x + \frac{b}{2a})^2$
- Simplify right side: $(x + \frac{b}{2a})^2 = \frac{b^2 – 4ac}{4a^2}$
- Square root both sides: $x + \frac{b}{2a} = \pm\frac{\sqrt{b^2 – 4ac}}{2a}$
- Solve for $x$: $x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}$
Vieta’s Formulas
If $r$ and $s$ are the roots of $ax^2 + bx + c = 0$, then:
- $r + s = -\frac{b}{a}$
- $r \times s = \frac{c}{a}$
Quadratic Function Properties
For $f(x) = ax^2 + bx + c$ where $a \neq 0$:
- Vertex: $(-\frac{b}{2a}, f(-\frac{b}{2a}))$
- Axis of symmetry: $x = -\frac{b}{2a}$
- y-intercept: $(0, c)$
- x-intercepts: Solutions to $ax^2 + bx + c = 0$
Rational Expressions
Basic Operations
- Addition/Subtraction: $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$
- Multiplication: $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
- Division: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$
Simplifying Rational Expressions
- Factor numerator and denominator completely
- Cancel common factors
- Simplify remaining expression
Complex Fractions
Simplify by:
- Method 1: Multiply numerator and denominator by LCD of all denominators
- Method 2: Simplify numerator and denominator separately, then divide
Radicals and Rational Exponents
Converting Between Radicals and Rational Exponents
- $\sqrt[n]{a} = a^{\frac{1}{n}}$
- $\sqrt[n]{a^m} = a^{\frac{m}{n}}$
Simplifying Radical Expressions
- Express radicand as product of perfect powers and remaining factors
- Use property: $\sqrt[n]{a^n \times b} = a \times \sqrt[n]{b}$
Rationalizing Denominators
- For $\frac{a}{\sqrt{b}}$: Multiply by $\frac{\sqrt{b}}{\sqrt{b}}$ to get $\frac{a\sqrt{b}}{b}$
- For $\frac{a}{\sqrt{b} + \sqrt{c}}$: Multiply by $\frac{\sqrt{b} – \sqrt{c}}{\sqrt{b} – \sqrt{c}}$ to get $\frac{a(\sqrt{b} – \sqrt{c})}{b – c}$
Functions
Function Notation
$f(x) = $ expression in terms of $x$
Domain and Range
- Domain: Set of all possible input values
- Range: Set of all possible output values
Common Functions
Function Type | General Form | Domain | Range |
---|---|---|---|
Linear | $f(x) = mx + b$ | All real numbers | All real numbers |
Quadratic | $f(x) = ax^2 + bx + c$ where $a \neq 0$ | All real numbers | $y \geq f(-\frac{b}{2a})$ if $a > 0$<br>$y \leq f(-\frac{b}{2a})$ if $a < 0$ |
Cubic | $f(x) = ax^3 + bx^2 + cx + d$ where $a \neq 0$ | All real numbers | All real numbers |
Absolute Value | $f(x) = |x|$ | All real numbers | $y \geq 0$ |
Square Root | $f(x) = \sqrt{x}$ | $x \geq 0$ | $y \geq 0$ |
Reciprocal | $f(x) = \frac{1}{x}$ | $x \neq 0$ | $y \neq 0$ |
Exponential | $f(x) = a^x$ where $a > 0, a \neq 1$ | All real numbers | $y > 0$ |
Logarithmic | $f(x) = \log_a(x)$ where $a > 0, a \neq 1$ | $x > 0$ | All real numbers |
Function Transformations
For a function $y = f(x)$:
- Vertical shift: $f(x) + k$ shifts $f(x)$ up by $k$ units
- Horizontal shift: $f(x – h)$ shifts $f(x)$ right by $h$ units
- Vertical stretch/compression: $a \cdot f(x)$ stretches by factor of $|a|$ (compression if $|a| < 1$)
- Horizontal stretch/compression: $f(bx)$ compresses by factor of $|b|$ (stretch if $|b| < 1$)
- Reflection across x-axis: $-f(x)$
- Reflection across y-axis: $f(-x)$
Function Composition
$(f \circ g)(x) = f(g(x))$
Inverse Functions
If $f(x) = y$, then $f^{-1}(y) = x$
To find $f^{-1}(x)$:
- Replace $f(x)$ with $y$
- Interchange $x$ and $y$
- Solve for $y$
- Replace $y$ with $f^{-1}(x)$
Logarithms
Definition
If $a^y = x$, then $\log_a(x) = y$ where $a > 0, a \neq 1, x > 0$
Properties of Logarithms
Property | Formula |
---|---|
Product Rule | $\log_a(xy) = \log_a(x) + \log_a(y)$ |
Quotient Rule | $\log_a(\frac{x}{y}) = \log_a(x) – \log_a(y)$ |
Power Rule | $\log_a(x^n) = n \cdot \log_a(x)$ |
Change of Base | $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ |
Identity | $\log_a(a) = 1$ |
Inverse | $\log_a(a^x) = x$ and $a^{\log_a(x)} = x$ |
Common Logarithms
$\log_{10}(x)$ is often written as $\log(x)$
Natural Logarithms
$\log_e(x)$ is written as $\ln(x)$ where $e \approx 2.71828$
Logarithmic Equations
Strategies:
- Use logarithm properties to combine/separate terms
- Convert to exponential form
- Combine like logarithmic terms
- Check solutions (logarithms of negative numbers or zero are undefined)
Sequences and Series
Arithmetic Sequence
Terms differ by a constant value (common difference)
- General term: $a_n = a_1 + (n-1)d$ where $d$ is the common difference
- Sum of first n terms: $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$
Geometric Sequence
Terms form a constant ratio (common ratio)
- General term: $a_n = a_1 \cdot r^{n-1}$ where $r$ is the common ratio
- Sum of first n terms: $S_n = \frac{a_1(1-r^n)}{1-r}$ for $r \neq 1$
- Sum of infinite geometric series: $S_{\infty} = \frac{a_1}{1-r}$ for $|r| < 1$
Binomial Theorem
$(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$
where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient
Complex Numbers
Basic Definitions
- Imaginary unit: $i = \sqrt{-1}$ where $i^2 = -1$
- Complex number: $z = a + bi$ where $a, b$ are real numbers
- Real part: $\text{Re}(z) = a$
- Imaginary part: $\text{Im}(z) = b$
- Complex conjugate: $\overline{z} = a – bi$
Operations with Complex Numbers
- Addition: $(a + bi) + (c + di) = (a + c) + (b + d)i$
- Subtraction: $(a + bi) – (c + di) = (a – c) + (b – d)i$
- Multiplication: $(a + bi)(c + di) = (ac – bd) + (ad + bc)i$
- Division: $\frac{a + bi}{c + di} = \frac{(a + bi)(c – di)}{(c + di)(c – di)} = \frac{ac + bd}{c^2 + d^2} + \frac{bc – ad}{c^2 + d^2}i$
Properties of Complex Numbers
- Modulus: $|a + bi| = \sqrt{a^2 + b^2}$
- Multiplicative inverse: $\frac{1}{a + bi} = \frac{a – bi}{a^2 + b^2}$
- Polar form: $a + bi = r(\cos\theta + i\sin\theta) = re^{i\theta}$ where $r = |a + bi|$ and $\theta = \tan^{-1}(\frac{b}{a})$
- De Moivre’s formula: $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$
Conic Sections
Circle
Equation: $(x – h)^2 + (y – k)^2 = r^2$
- Center: $(h, k)$
- Radius: $r$
Parabola
Vertex at $(h, k)$:
- Vertical: $y = a(x – h)^2 + k$
- Horizontal: $x = a(y – k)^2 + h$
Focus-directrix definition:
- Vertical axis, vertex at origin: $y = \frac{x^2}{4p}$ (focus at $(0, p)$, directrix $y = -p$)
- Horizontal axis, vertex at origin: $x = \frac{y^2}{4p}$ (focus at $(p, 0)$, directrix $x = -p$)
Ellipse
Equation: $\frac{(x – h)^2}{a^2} + \frac{(y – k)^2}{b^2} = 1$
- Center: $(h, k)$
- Semi-major axis: $a$ (if $a > b$)
- Semi-minor axis: $b$ (if $a > b$)
- Foci: $(h \pm c, k)$ for horizontal ellipse or $(h, k \pm c)$ for vertical ellipse, where $c^2 = |a^2 – b^2|$
- Eccentricity: $e = \frac{c}{a}$ where $0 < e < 1$
Hyperbola
Equation: $\frac{(x – h)^2}{a^2} – \frac{(y – k)^2}{b^2} = 1$ (horizontal) or $\frac{(y – k)^2}{a^2} – \frac{(x – h)^2}{b^2} = 1$ (vertical)
- Center: $(h, k)$
- Vertices: $(h \pm a, k)$ for horizontal or $(h, k \pm a)$ for vertical
- Foci: $(h \pm c, k)$ for horizontal or $(h, k \pm c)$ for vertical, where $c^2 = a^2 + b^2$
- Asymptotes: $y – k = \pm\frac{b}{a}(x – h)$ for horizontal or $y – k = \pm\frac{a}{b}(x – h)$ for vertical
- Eccentricity: $e = \frac{c}{a}$ where $e > 1$
Matrices and Determinants
Matrix Operations
For matrices $A = [a_{ij}]$ and $B = [b_{ij}]$:
- Addition: $(A + B){ij} = a{ij} + b_{ij}$
- Scalar multiplication: $(cA){ij} = c \cdot a{ij}$
- Matrix multiplication: $(AB){ij} = \sum_k a{ik} \cdot b_{kj}$
Matrix Properties
- Identity matrix: $I_n$ has 1’s on the diagonal and 0’s elsewhere
- Transpose: $(A^T){ij} = a{ji}$
- Inverse: $A \cdot A^{-1} = A^{-1} \cdot A = I$
Determinant of 2×2 Matrix
$\det\begin{pmatrix} a & b \ c & d \end{pmatrix} = ad – bc$
Determinant of 3×3 Matrix
$\det\begin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} = a(ei – fh) – b(di – fg) + c(dh – eg)$
Cramer’s Rule
For a system of $n$ linear equations with $n$ unknowns: $x_i = \frac{\det(A_i)}{\det(A)}$ where $A$ is the coefficient matrix and $A_i$ is the matrix formed by replacing the $i$-th column of $A$ with the constant terms.
Common Formulas and Identities
Quadratic Formula
$x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}$ for $ax^2 + bx + c = 0$
Distance Formula
$d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2}$
Midpoint Formula
$M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$
Distance from Point to Line
$d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$ for line $ax + by + c = 0$ and point $(x_0, y_0)$
Trigonometric Identities
- $\sin^2\theta + \cos^2\theta = 1$
- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- $\cot\theta = \frac{\cos\theta}{\sin\theta}$
- $\sec\theta = \frac{1}{\cos\theta}$
- $\csc\theta = \frac{1}{\sin\theta}$
Pythagorean Theorem
$a^2 + b^2 = c^2$ for a right triangle with sides $a$, $b$, and hypotenuse $c$
Area Formulas
- Triangle: $A = \frac{1}{2}bh$ or $A = \frac{1}{2}ab\sin C$
- Rectangle: $A = lw$
- Parallelogram: $A = bh$
- Trapezoid: $A = \frac{1}{2}h(a + b)$ where $a$ and $b$ are parallel sides
- Circle: $A = \pi r^2$
Volume Formulas
- Cube: $V = s^3$
- Rectangular prism: $V = lwh$
- Sphere: $V = \frac{4}{3}\pi r^3$
- Cylinder: $V = \pi r^2h$
- Cone: $V = \frac{1}{3}\pi r^2h$